THE IMPORTANCE OF SOIL ORGANIC MATTER (SOM) ON SOIL PRODUCTIVITY AND PLANT GROWTH

Authors

  • A HUSSAIN Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan
  • H BASHIR Department of Agrotechnology, Faculty of Agriculture, Universitas Sebelas Maret (UNS) in Surakarta, Indonesia
  • SA ZAFAR Oilseeds Research Institute, Ayub Agricultural Research Institute Faisalabad, Pakistan
  • RS REHMAN College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
  • MN KHALID Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan
  • M AWAIS Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan
  • MT SADIQ Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan
  • I AMJAD Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan

DOI:

https://doi.org/10.54112/basrj.v2023i1.11

Keywords:

soil organic matter, soil health, crop production, nutrient supply, soil structure, water-holding capacity, microbial activity, climate change, sustainability

Abstract

Soil organic matter (SOM) is vital to soil health and plays a critical role in crop production. This review paper examines the impact of SOM on soil health, crop production, and the challenges and opportunities associated with managing SOM. The paper emphasizes the importance of interdisciplinary research, technological advancements, and supportive policies in addressing SOM dynamics and management complexities. The review highlights the role of SOM in nutrient supply, soil structure improvement, water-holding capacity, and microbial activity enhancement, which are fundamental for sustainable agricultural systems. Various management practices to enhance SOM, including organic amendments, cover cropping, conservation tillage, and crop rotation, are discussed. Despite the benefits of managing SOM, challenges such as slow formation rates, trade-offs with other agricultural objectives, and economic viability exist. Addressing these challenges requires further research, knowledge exchange, and integrating traditional knowledge with modern technologies. Future perspectives and research needs include advancing interdisciplinary collaboration, harnessing emerging technologies, understanding the interactions between SOM and climate change, exploring novel management practices, quantifying ecosystem services, addressing knowledge gaps, and providing policy support and incentives. Sustainable soil management strategies can be developed by embracing these perspectives and addressing the identified research needs. These strategies optimize SOM levels, promote soil health, enhance crop productivity, and contribute to global food security and environmental sustainability. Overall, this review provides valuable insights for researchers, policymakers, and stakeholders in their efforts to enhance SOM management and promote sustainable agriculture.

References

Adhikari, K., & Hartemink, A. E. (2016). Linking soils to ecosystem services—A global review. Geoderma, 262, 101-111. https://doi.org/10.1016/j.geoderma.2015.08.009

Bender, S. F., Wagg, C., & van der Heijden, M. G. (2016). An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends in ecology & evolution, 31(6), 440-452. https://doi.org/10.1016/j.tree.2016.02.016

Berendsen, R. L., Pieterse, C. M., & Bakker, P. A. (2012). The rhizosphere microbiome and plant health. Trends in plant science, 17(8), 478-486. https://doi.org/10.1016/j.tplants.2012.04.001

Bizi, A. B., & Sidi, Y. D. (2023). Soil Erosion in Northern Nigeria: Potential Impact and Possible Solution: A Review. Journal of Scientific Research and Reports, 29(7), 17-26. https://doi.org/10.9734/jsrr/2023/v29i71756

Blanco-Canqui, H., & Lal, R. (2008). Principles of soil conservation and management. Springer Science & Business Media.

Blanco‐Canqui, H., Shaver, T. M., Lindquist, J. L., Shapiro, C. A., Elmore, R. W., Francis, C. A., & Hergert, G. W. (2015). Cover crops and ecosystem services: Insights from studies in temperate soils. Agronomy journal, 107(6), 2449-2474. https://doi.org/10.2134/agronj15.0086

Bronick, C. J., & Lal, R. (2005). Soil structure and management: a review. Geoderma, 124(1-2), 3-22. https://doi.org/10.1016/j.geoderma.2004.03.005

Chen, S., Arrouays, D., Angers, D. A., Martin, M. P., & Walter, C. (2019). Soil carbon stocks under different land uses and the applicability of the soil carbon saturation concept. Soil and Tillage Research, 188, 53-58. https://doi.org/10.1016/j.still.2018.11.001

Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A., Eliasson, P. E., ... & Bradford, M. A. (2011). Temperature and soil organic matter decomposition rates–synthesis of current knowledge and a way forward. Global change biology, 17(11), 3392-3404. https://doi.org/10.1111/j.1365-2486.2011.02496.x

Cotrufo, M. F., Soong, J. L., Horton, A. J., Campbell, E. E., Haddix, M. L., Wall, D. H., & Parton, W. J. (2015). Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 8(10), 776-779.

Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., & Paul, E. (2013). The M icrobial E fficiency‐M atrix S tabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?. Global change biology, 19(4), 988-995. https://doi.org/10.1111/gcb.12113

Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081), 165-173.

Diacono, M., & Montemurro, F. (2015). Effectiveness of organic wastes as fertilizers and amendments in salt-affected soils. Agriculture, 5(2), 221-230. https://doi.org/10.3390/agriculture5020221

Díaz-Siefer, P., Fontúrbel, F. E., Berasaluce, M., Huenchuleo, C., Lal, R., Mondaca, P., & Celis-Diez, J. L. (2022). The market–society–policy nexus in sustainable agriculture. Environment, Development and Sustainability, 1-20. https://doi.org/10.1007/s10668-022-02691-y

Gattinger, A., Muller, A., Haeni, M., Skinner, C., Fliessbach, A., Buchmann, N., ... & Niggli, U. (2012). Enhanced top soil carbon stocks under organic farming. Proceedings of the National Academy of Sciences, 109(44), 18226-18231. https://doi.org/10.1073/pnas.1209429109

Govaerts, B., Mezzalama, M., Unno, Y., Sayre, K. D., Luna-Guido, M., Vanherck, K., ... & Deckers, J. (2007). Influence of tillage, residue management, and crop rotation on soil microbial biomass and catabolic diversity. Applied soil ecology, 37(1-2), 18-30. https://doi.org/10.1016/j.apsoil.2007.03.006

Hudson, B. D. (1994). Soil organic matter and available water capacity. Journal of soil and water conservation, 49(2), 189-194.

Islam, M. S., Muhyidiyn, I., Islam, M. R., Hasan, M. K., Hafeez, A. G., Hosen, M. M., ... & El Sabagh, A. (2022). Soybean and sustainable agriculture for food security. DOI: 10.5772/intechopen.104129

Janzen, H. H. (2006). The soil carbon dilemma: shall we hoard it or use it?. Soil Biology and Biochemistry, 38(3), 419-424. https://doi.org/10.1016/j.soilbio.2005.10.008

Kätterer, T., Bolinder, M. A., Andrén, O., Kirchmann, H., & Menichetti, L. (2011). Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agriculture, Ecosystems & Environment, 141(1-2), 184-192. https://doi.org/10.1016/j.agee.2011.02.029

Kautz, T., Amelung, W., Ewert, F., Gaiser, T., Horn, R., Jahn, R., ... & Köpke, U. (2013). Nutrient acquisition from arable subsoils in temperate climates: a review. Soil Biology and Biochemistry, 57, 1003-1022. https://doi.org/10.1016/j.soilbio.2012.09.014

Kell, D. B. (2011). Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration. Annals of Botany, 108(3), 407-418. https://doi.org/10.1093/aob/mcr175

Kibblewhite, M. G., Ritz, K., & Swift, M. J. (2008). Soil health in agricultural systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1492), 685-701. https://doi.org/10.1098/rstb.2007.2178

Lal R. Soil erosion and the global carbon budget. Environ Int. 2003 Jul 1;29(4):437-50. https://doi.org/10.1016/S01604120(02)00192-7

Lal, R. (2001). Soil degradation by erosion. Land degradation & development, 12(6), 519-539. https://doi.org/10.1002/ldr.472

Lal, R. (2004). Soil carbon sequestration impact on global climate change and food security. science, 304(5677), 1623-1627. https://doi.org/10.1126/science.1097396

Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123(1-2), 1-22. https://doi.org/10.1016/j.geoderma.2004.01.032

Lal, R. (2006). Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land degradation & development, 17(2), 197-209. https://doi.org/10.1002/ldr.696

Lal, R. (2009). Challenges and opportunities in soil organic matter research. European Journal of Soil Science, 60(2), 158-169. https://doi.org/10.1111/j.13652389.2008.01114.x

Lal, R. (2010). Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. BioScience, 60(9), 708-721. https://doi.org/10.1525/bio.2010.60.9.8

Lal, R. (2012). Climate change and soil degradation mitigation by sustainable management of soils and other natural resources. Agricultural Research, 1, 199-212. DOI 10.1007/s40003-012-0031-9

Lal, R. (2016). Beyond COP 21: potential and challenges of the “4 per Thousand” initiative. Journal of Soil and Water Conservation, 71(1), 20A-25A. DOI: https://doi.org/10.2489/jswc.71.1.20A

Lal, R. (2016). Soil health and carbon management. Food and Energy Security, 5(4), 212-222. https://doi.org/10.1002/fes3.96

Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., ... & Rossi, J. P. (2006). Soil invertebrates and ecosystem services. European journal of soil biology, 42, S3-S15. https://doi.org/10.1016/j.ejsobi.2006.10.002

Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528(7580), 60-68.

Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota–a review. Soil biology and biochemistry, 43(9), 1812-1836. https://doi.org/10.1016/j.soilbio.2011.04.022

Lindsay, W. L. (1979). Chemical equilibria in soils. Blackburn Press, Caldwell, NJ. Chemical equilibria in soils. Blackburn Press, Caldwell, NJ.

Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual review of microbiology, 63, 541-556. https://doi.org/10.1146/annurev.micro.62.081307.162918

Major, J., Lehmann, J., Rondon, M., & Goodale, C. (2010). Fate of soil‐applied black carbon: downward migration, leaching and soil respiration. Global Change Biology, 16(4), 1366-1379. https://doi.org/10.1111/j.1365-2486.2009.02044.x

Mayer, M., Krause, H. M., Fliessbach, A., Mäder, P., & Steffens, M. (2022). Fertilizer quality and labile soil organic matter fractions are vital for organic carbon sequestration in temperate arable soils within a long-term trial in Switzerland. Geoderma, 426, 116080. https://doi.org/10.1016/j.geoderma.2022.116080

Minasny, B., Arrouays, D., McBratney, A. B., Angers, D. A., Chambers, A., Chaplot, V., ... & Winowiecki, L. (2018). Rejoinder to Comments on Minasny et al., 2017 Soil carbon 4 per mille Geoderma 292, 59–86. Geoderma, 309, 124-129. https://doi.org/10.1016/j.geoderma.2017.05.026

Montgomery, D. R. (2007). Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences, 104(33), 13268-13272. https://doi.org/10.1073/pnas.0611508104

Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere, L., & Grace, P. (2014). Conservation agriculture and ecosystem services: An overview. Agriculture, Ecosystems & Environment, 187, 87-105. https://doi.org/10.1016/j.agee.2013.10.010

Pan, G., Smith, P., & Pan, W. (2009). The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agriculture, Ecosystems & Environment, 129(1-3), 344-348. https://doi.org/10.1016/j.agee.2008.10.008

Paustian, K., Collins, H. P., & Paul, E. A. (2019). Management controls on soil carbon. In Soil organic matter in temperate agroecosystems (pp. 15-49). CRC Press.

Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-smart soils. Nature, 532(7597), 49-57.

Paustian, K., Six, J., Elliott, E., & Hunt, H. (2000). Management options for reducing CO2 emissions from agricultural soils. Biogeochem. 48: 147-163.

Peoples, M. B., Brockwell, J., Herridge, D. F., Rochester, I. J., Alves, B. J. R., Urquiaga, S., ... & Jensen, E. S. (2009). The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis, 48, 1-17.

Piccolo, A. (2002). The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science. https://doi.org/10.1016/S0065-2113(02)75003-7

Poeplau, C., & Don, A. (2015). Carbon sequestration in agricultural soils via cultivation of cover crops–A meta-analysis. Agriculture, Ecosystems & Environment, 200, 33-41. https://doi.org/10.1016/j.agee.2014.10.024

Postma-Blaauw, M. B., de Goede, R. G. M., Bloem, J., Faber, J. H., & Brussaard, L. (2010). Soil biota community structure and abundance under agricultural intensification and extensification. Ecology, 91(2), 460-473. https://doi.org/10.1890/09-0666.1

Powlson, D. S., Stirling, C. M., Jat, M. L., Gerard, B. G., Palm, C. A., Sanchez, P. A., & Cassman, K. G. (2014). Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change, 4(8), 678-683.

Rasse, D. P., Rumpel, C., & Dignac, M. F. (2005). Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant and soil, 269(1-2), 341-356. DOI 10.1007/s11104-004-0907-y

Reganold, J. P., Andrews, P. K., Reeve, J. R., Carpenter-Boggs, L., Schadt, C. W., Alldredge, J. R., ... & Zhou, J. (2010). Fruit and soil quality of organic and conventional strawberry agroecosystems. PloS one, 5(9), e12346. https://doi.org/10.1371/journal.pone.0012346

Schlesinger, W. H., & Bernhardt, E. S. (2013). Biogeochemistry: an analysis of global change. Academic press.

Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., ... & Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49-56.

Sistani, K. R., Mikha, M. M., Warren, J. G., Gilfillen, B., Acosta-Martinez, V., & Willian, T. (2010). Nutrient source and tillage impact on corn grain yield and soil properties. Soil Science, 175(12), 593-600. DOI: 10.1097/SS.0b013e3181fbdfee

Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and tillage research, 79(1), 7-31. https://doi.org/10.1016/j.still.2004.03.008

Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and soil, 241, 155-176.

Smith, P., Cotrufo, M. F., Rumpel, C., Paustian, K., Kuikman, P. J., Elliott, J. A., ... & Scholes, M. C. (2015). Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil, 1(2), 665-685. https://doi.org/10.5194/soil-1-665-2015

Sprent, J. I., & Platzmann, J. (2001). Nodulation in legumes (p. 146). Kew: Royal Botanic Gardens.

Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., de Macêdo, J. L. V., Blum, W. E., & Zech, W. (2007). Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and soil, 291, 275-290. DOI 10.1007/s11104-007-9193-9

Stevenson, F. J. (1994). Humus chemistry: genesis, composition, reactions. John Wiley & Sons.

Stevenson, F. J., & Cole, M. A. (1999). Cycles of soils: carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley & Sons.

Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., ... & Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 164, 80-99. https://doi.org/10.1016/j.agee.2012.10.001

Sylvia, D. M., Fuhrmann, J. J., Hartel, P. G., & Zuberer, D. A. (2005). Principles and applications of soil microbiology (No. QR111 S674 2005). Pearson.

Trivedi, P., Anderson, I. C., & Singh, B. K. (2013). Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends in Microbiology, 21(12), 641-651. https://doi.org/10.1016/j.tim.2013.09.005

Van Veen, J. A., & Kuikman, P. J. (1990). Soil structural aspects of decomposition of organic matter by micro-organisms. Biogeochemistry, 11, 213-233.

Verhulst, N., Govaerts, B., Verachtert, E., Castellanos-Navarrete, A., Mezzalama, M., Wall, P., ... & Sayre, K. D. (2010). Conservation agriculture, improving soil quality for sustainable production systems. Advances in soil science: food security and soil quality, 1799267585, 137-208.

West, T. O., & Post, W. M. (2002). Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Science Society of America Journal, 66(6), 1930-1946. https://doi.org/10.2136/sssaj2002.1930

Downloads

Published

2023-05-03

How to Cite

HUSSAIN, A., BASHIR, H., ZAFAR, S., REHMAN, R., KHALID, M., AWAIS, M., SADIQ, M., & AMJAD, I. (2023). THE IMPORTANCE OF SOIL ORGANIC MATTER (SOM) ON SOIL PRODUCTIVITY AND PLANT GROWTH. Biological and Agricultural Sciences Research Journal, 2023(1), 11. https://doi.org/10.54112/basrj.v2023i1.11

Most read articles by the same author(s)