IMPACT OF POTENTIALLY SOIL MINERALIZABLE NITROGEN (PMN) ON SOIL HEALTH AND CROP PRODUCTION
DOI:
https://doi.org/10.54112/basrj.v2023i1.12Keywords:
potentially soil mineralizable nitrogen (PMN), soil health, crop production, nutrient availability, soil organic matter, microbial activity, crop rotation, sustainability, nutrient cyclingAbstract
Potentially Soil Mineralizable Nitrogen (PMN) is critical in soil health and crop production. This review paper explores the impact of PMN on soil health, crop production, different soil types, and mitigation strategies. It highlights the importance of PMN in enhancing nutrient availability, crop yield, and quality. The paper discusses the role of PMN in promoting soil organic matter accumulation, supporting microbial activity, and improving soil physical properties. Case studies illustrate the influence of PMN on different soil types and associated crops. Mitigation and management strategies are discussed, such as soil organic matter management, precision nutrient management, and crop rotation/diversification. The review also identifies future research directions, including refining PMN measurement techniques, integrating into nutrient management decision support systems, and exploring PMN interactions with other soil properties and environmental factors. Overall, effective PMN management is crucial for sustainable agriculture, and further research and collaboration are needed to advance our understanding and develop practical strategies for its implementation.
References
Amiri, M. R., Sepaskhah, A. R., & Tafteh, A. (2023). Evaluation of saffron yield affected by intercropping with winter wheat, soil fertilizers and irrigation regimes in a semi-arid region. Scientific Reports, 13(1), 1-14.
Anderson, C., Smith, D., Jones, C., & Johnson, J. (2019). Influence of potentially mineralizable nitrogen on wheat yield and quality in clay soils. Journal of Agronomy, 111(3), 256-263.
Bundy, L. G., & Meisinger, J. J. (1994). Nitrogen availability indices. In R. W. Weaver (Ed.), Methods of soil analysis. Part 2. Microbiological and biochemical properties (pp. 951-984). Soil Science Society of America. https://doi.org/10.2136/sssabookser5.2.c41
Bundy, L. G., & Meisinger, J. J. (1994). Nitrogen availability indices. In R. W. Weaver (Ed.),
Bundy, L. G., & Meisinger, J. J. (1994). Nitrogen availability indices. In: Methods of Soil Analysis: Part 2—Microbiological and Biochemical Properties. Soil Science Society of America, Inc.
Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., de Goede, R., ... & Brussaard, L. (2018). Soil quality–A critical review. Soil Biology and Biochemistry, 120, 105-125. https://doi.org/10.1016/j.soilbio.2018.01.030
Cao, G., Wu, L., Qu, X., Dai, L., Ye, Y., Xu, S., Wu, C., & Chen, Y. (2023). Correlation between Changes in Soil Properties and Microbial Diversity Driven by Different Management in Artificial Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook.) Plantations. Forests, 14(5). DOI: 10.3390/f14050877
Cavigelli, M. A., & Robertson, G. P. (2001). Role of denitrifier diversity in rates of nitrous oxide consumption in a terrestrial ecosystem. Soil Biology and Biochemistry, 33(3), 297-310. https://doi.org/10.1016/S0038-0717(00)00141-3
Chirinda, N., Kracher, D., Laegdsporato, A. (2012). Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology, 93(4), 930-938. https://doi.org/10.1890/11-0026.1
Chirinda, N., Olesen, J. E., Porter, J. R., & Schjønning, P. (2010). Soil properties, crop production and greenhouse gas emissions from organic and inorganic fertilizer-based arable cropping systems. Agriculture, ecosystems & environment, 139(4), 584-594. https://doi.org/10.1016/j.agee.2010.10.001
Franzluebbers, A. J., Hons, F. M., & Zuberer, D. A. (1999). Soil organic carbon, microbial biomass, and mineralizable carbon and nitrogen in sorghum. Soil Science Society of America Journal, 63(3), 569-576. https://doi.org/10.2136/sssaj1995.03615995005900020027x
Griffin, D. E., Wang, D., Parikh, S. J., & Scow, K. M. (2017). Short-lived effects of walnut shell biochar on soils and crop yields in a long-term field experiment. Agriculture, Ecosystems & Environment, 236, 21-29. https://doi.org/10.1016/j.agee.2016.11.002
Hansen, S., Berland Frøseth, R., Stenberg, M., Stalenga, J., Olesen, J. E., Krauss, M., ... & Watson, C. A. (2019). Reviews and syntheses: Review of causes and sources of N 2 O emissions and NO 3 leaching from organic arable crop rotations. Biogeosciences, 16(14), 2795-2819. https://doi.org/10.5194/bg-16-2795-2019
Hart, S. C., Stark, J. M., Davidson, E. A., & Firestone, M. K. (1994). Nitrogen mineralization, immobilization, and nitrification. In R. W. Weaver (Ed.), Methods of soil analysis. Part 2. Microbiological and biochemical properties (pp. 985-1018). Soil Science Society of America. https://doi.org/10.2136/sssabookser5.2.c42
Johnson, M., Thompson, A., Williams, R., & Davis, J. (2018). Potentially mineralizable nitrogen and soybean yield in loamy soils. Soil Science Society of America Journal, 82(1), 185-192.
Kumar, S., Shahid, M., Tripathi, R., Mohanty, S., Kumar, A., Bhattacharyya, P., ... & Lal, R. (2023). Soil health card scheme: A noble approach for sustainable soil health management in India. Journal of Cleaner Production, 313 (4), 127-540.
Kumar, U., Mishra, V. N., Kumar, N., Srivastava, L. K., Tedia, K., Bajpai, R. K., ... & Mohanty, M. (2022). Assessing soil quality and their indicators for long-term rice-based cropping systems in hot sub-humid eco-region of India. Soil Research, 60(6), 610-623. https://doi.org/10.1071/SR21122
Mahal, N. K., Castellano, M. J., & Miguez, F. E. (2018). Conservation agriculture practices increase potentially mineralizable nitrogen: A meta‐analysis. Soil Science Society of America Journal, 82(5), 1270-1278. https://doi.org/10.2136/sssaj2017.07.0245
Manzoni, S., Schimel, J. P., & Porporato, A. (2012). Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology, 93(4), 930-938. https://doi.org/10.1890/11-0026.1
Moreno-Lora, A., Velasco-Sánchez, Á., & Delgado, A. (2023). Effects of Microbial Inoculants and Organic Amendments on Wheat Nutrition and Development in a Variety of Soils. Environmental Processes. DOI: 10.1007/s42729-023-01248-w
Murphy, D. V., Cookson, W. R., Braimbridge, M., Marschner, P., Jones, D. L., Stockdale, E. A., & Abbott, L. K. (2011). Relationships between soil organic matter and the soil microbial biomass (size, functional diversity, and community structure) in crop and pasture systems in a semi-arid environment. Soil Research, 49(7), 582-594.
Roper, M. M., & Gupta, V. V. S. R. (2016). Decision support systems for nutrient management in cropping systems: Review and prospects. Precision Agriculture, 17(4), 410-439.
Schimel, J. P., & Bennett, J. (2004). Nitrogen mineralization: challenges of a changing paradigm. Ecology, 85(3), 591-602.
Schimel, J. P., & Bennett, J. (2004). Nitrogen mineralization: challenges of a changing paradigm. Ecology, 85(3), 591-602.
Schomberg, H. H., Endale, D. M., Calegari, A., Peixoto, R., Miyazawa, M., & Cabrera, M. L. (2009). Influence of cover crops on potential nitrogen availability to succeeding crops in a Southern Piedmont soil. Biology and Fertility of Soils, 45(2), 115-126. DOI 10.1007/s00374-005-0027-8
Schomberg, H. H., Wietholter, S., Griffin, T. S., Reeves, D. W., Cabrera, M. L., Fisher, D. S., ... & Endale, D. M. (2009). Assessing indices for predicting potential nitrogen mineralization in soils under different management systems. Soil Science Society of America Journal, 73(5), 1575-1586. https://doi.org/10.2136/sssaj2008.0303
Singh, B., & Schulze, D. G. (2015). Soil minerals and plant nutrition. Nature Education Knowledge, 6(1), 1.
Singh, B., & Schulze, D. G. (2015). Soil minerals and plant nutrition. In: Soil Microbiology, Ecology, and Biochemistry (Fourth Edition). Elsevier Inc.
Smith, E., Brown, S., Anderson, K., & Wilson, P. (2020). Potentially mineralizable nitrogen and corn production in sandy soils. Agronomy Journal, 112(4), 1898-1905.
Truong, Q., & Giao, N. (2023). Characterizing Physical and Chemical Properties of Sandy Soil in Vietnamese Mekong Delta Province. DOI: 10.12912/27197050/159791
Vitousek, P. M., Menge, D. N., Reed, S. C., & Cleveland, C. C. (2013). Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1621), 20130119.
Vitousek, P. M., Menge, D. N., Reed, S. C., & Cleveland, C. C. (2013). Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1621), 20130119. https://doi.org/10.1098/rstb.2013.0119
Zhang, W., Ma, J., Cui, Z., Xu, L., Liu, Q., Li, J., Wang, S., & Zeng, X. (2023). Effects of Biodegradable Plastic Mulch Film on Cabbage Agronomic and Nutritional Quality Traits, Soil Physicochemical Properties and Microbial Communities. Agronomy, 13(5). DOI: 10.3390/agronomy13051220
Zhang, Y., Wang, J., Liu, Y., Lu, J., Li, X., & Luo, S. (2023). Nitrogen use efficiency and yield of winter wheat under different irrigation and nitrogen regimes in North China Plain. Science Bulletin.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 H BASHIR, SA ZAFAR, RS REHMAN, M HUSSAIN, M HARIS, MN KHALID, M AWAIS, MT SADIQ, I AMJAD
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third-party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. © The Author(s)