BREEDING POTENTIAL OF SESAME FOR WATERLOGGING STRESS IN ASIA
DOI:
https://doi.org/10.54112/basrj.v2023i1.10Keywords:
Sesame, waterlogging stress, breeding, tolerance, asia, physiology, genetics, omics, germplasm resources, climate-smart agricultureAbstract
Sesame is an important oilseed crop in Asia that is often affected by waterlogging stress, leading to significant yield losses and reduced crop quality. Breeding waterlogging-tolerant sesame varieties is essential for ensuring the sustainable production of this crop in regions prone to waterlogging events. This review provides an overview of the challenges and opportunities associated with breeding sesame for waterlogging tolerance in Asia. We discuss the current state of sesame production in the region, sesame's physiological and morphological responses to waterlogging stress, and the genetic mechanisms underlying waterlogging tolerance. Moreover, we highlight the importance of identifying and utilizing waterlogging-tolerant sesame varieties and germplasm resources and the challenges in breeding waterlogging-tolerant sesame. Finally, we outline future perspectives for breeding waterlogging-tolerant sesame, including integrating traditional and modern breeding approaches, the potential for omics technologies and systems biology, and the role of climate-smart agriculture and sustainable management practices in mitigating waterlogging stress. By addressing these challenges, researchers and breeders can contribute to the continued success of sesame production in Asia and help to safeguard the livelihoods of millions of smallholder farmers who depend on this crop for their income and food security.
References
Abideen, Z., Raza, A., Khaliq, I., & Ali, Q. (2017). Morphological and biochemical responses of sesame (Sesamum indicum L.) to waterlogging. Pakistan Journal of Agricultural Sciences, 54(1), 83-90.
Ashri, A., & Knowles, P. (1960). The origin and evolution of sesame (Sesamum indicum L.) in the Old World Tropics. Economic Botany, 14(4), 350-368.
Baghery, M. A., Kazemitabar, S. K., Dehestani, A., Mehrabanjoubani, P., Naghizadeh, M. M., & Masoudi-Nejad, A. (2022). Insight into gene regulatory networks involved in sesame (Sesamum indicum L.) drought response. Biologia, 77(4), 1181-96. https://doi.org/10.1007/s11756-022-01009-7
Basso, B., Hyndman, D. W., Kendall, A. D., Grace, P. R., & Robertson, G. P. (2013). Can impacts of climate change and agricultural adaptation strategies be accurately quantified if crop models are annually re-initialized? PLoS One, 8(6), e66448. https://doi.org/10.1371/journal.pone.0127333
Bedigian, D. (2003). Historical and ethnobotanical perspectives on the cultivation of sesame. Acta Horticulturae, 69, 33-44.
Booth, E. J., McConnachie, A. J., & Joffe, B. I. (2013). Wild relatives of cultivated sesame in southern Africa: Distribution patterns and potential for introgression into the crop. Genetic Resources and Crop Evolution, 60(4), 1385-1400.
Chen, L., Guo, W., Lu, X., & Qiu, L. (2021). SiYABBY5, a new YABBY gene from sesame, regulates root development and is involved in waterlogging response. BMC Plant Biology, 21(1), 89. https://doi.org/10.1186/s12870-021-02859-0
Dossa, K., Diouf, D., & Cissé, N. (2016). An Integrated Genomic and Morphophysiological Approach to Understanding the Basis of Drought Resistance in Sesame. Agricultural Water Management, 176, 126-135.
Dossa, K., Diouf, D., & Cissé, N. (2017). Genome-Wide Investigation of Hsf Genes in Sesame Reveals Their Segmental Duplication Expansion and Their Active Role in Drought Stress Response. Frontiers in Plant Science, 8, 1587. https://doi.org/10.3389/fpls.2016.01522
Dossa, K., Mmadi, M. A., Zhou, R., Zhou, Q., Yang, M., Diouf, D., & Cissé, N. (2017). The emerging oilseed crop Sesamum indicum L. enters the “Omics” era. Frontiers in Plant Science, 8, 1154. https://doi.org/10.3389/fpls.2017.01154
FAO (2013). Climate-Smart Agriculture Sourcebook. Food and Agriculture Organization of the United Nations, Rome. Retrieved from http://www.fao.org/3/i3325e/i3325e00.pdf
FAO (Food and Agriculture Organization of the United Nations). (2021). FAOSTAT database. http://www.fao.org/faostat/en/#data
Fiorani, F., & Schurr, U. (2013). Future scenarios for plant phenotyping. Annual Review of Plant Biology, 64, 267-291. https://doi.org/10.1146/annurev-arplant-050312-120137
He, X., Wang, Y., Zhu, L., Xiao, Y., Liang, Y., & He, Y. (2019). Comparative transcriptome analysis of salt-sensitive and salt-tolerant sesame under salt stress. BMC Plant Biology, 19(1), 1-19. https://doi.org/10.1007/s13258-019-00793-y
Huang, X., Chen, M., Yang, L., Li, Y., & Wu, J. (2020). Sesame FG: an integrated database for the functional genomics of sesame. Scientific Reports, 10(1), 1-8. DOI:10.1038/s41598-017-02586-3
Huang, X., Yang, S., Gong, J., Zhao, Y., Feng, Q., Gong, H., Li, W., Zhan, Q., Cheng, B., Xia, J., & Chen, N. (2015). Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nature Communications, 6(1), 1-9. | DOI: 10.1038/ncomms7258
IPCC (Intergovernmental Panel on Climate Change). (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Retrieved from https://www.ipcc.ch/report/ar5/wg2/
Janila, P., Variath, M. T., Pandey, M. K., Desmae, H., Motagi, B. N., Okori, P., Manohar, S. S., Rathnakumar, A. L., Radhakrishnan, T., Liao, B., Varshney, R. K., & Morris, B. (2016). Genomic tools in groundnut breeding program: status and perspectives. Frontiers in Plant Science, 7, p.289. https://doi.org/10.3389/fpls.2016.00289
Kaur, J., & Gupta, A. K. (2020). Recent advances in sesame breeding for agronomic traits and stress tolerance: a review. Agronomy, 10(3), 363.
Kumar, R., Bohra, A., Pandey, A. K., Pandey, M. K., & Kumar, A. (2020). Metabolomics for Plant Improvement: Status and Prospects. Frontiers in Plant Science, 11, 1152. https://doi.org/10.3389/fpls.2017.01302
Kumar, R., Kumar, P., & Singh, V. K. (2021). Molecular breeding of sesame (Sesamum indicum L.) for yield and its attributes: A review. Journal of Crop Improvement, 35(1), 27-56.
Leng, Y., Wu, X., Huang, J., Wu, Y., & Zhang, W. (2020). Identification of QTLs for seed weight under waterlogging stress and their association with yield‐related traits in sesame (Sesamum indicum L.). Plant Breeding, 139(6), 1146-1155.
Li, H., Tahir ul Qamar, M., Yang, L., Liang, J., You, J., & Wang, L. (2023). Current Progress, Applications and Challenges of Multi-Omics Approaches in Sesame Genetic Improvement. International Journal of Molecular Sciences, 24(4), 3105. https://doi.org/10.3390/ijms24043105
Li, M., Li, X.,25. Li, M., Li, X., Li, D., Gao, Q., Li, C., & Wang, Y., Liang, Z. (2019). Comparative transcriptome analysis of sesame (Sesamum indicum L.) under long-term drought stress. BMC Plant Biology, 19(1), 183.
Li, X., Wei, Y., Moore, M., Zhu, Y., & Liu, P. (2019). Genomic variation and DNA methylation patterns of sesame under various abiotic stresses. BMC Plant Biology, 19(1), 314.
Liang, J., Sun, J., Ye, Y., Yan, X., Yan, T., Rao, Y., Zhou, H., & Le, M. (2021). QTL mapping of PEG-induced drought tolerance at the early seedling stage in sesame using whole genome re-sequencing. PLoS One, 16(2), e0247681. https://doi.org/10.1371/journal.pone.0247681
Liu, J., Sun, H., Li, Z., & Yang, Y. (2020). Plant hormone-mediated regulation of stress responses: insights from abscisic acid and gibberellins. Frontiers in Plant Science, 11, 584230.
Lu, Q., Wen, X., Li, H., Jin, M., & Shen, J. (2019). Advances in genome editing technology and its promising application in crop improvement. Plant Communications, 1(3), 100017. https://doi.org/10.1186/2047-217X-3-24
Luo, X., Cai, Y., & Zhu, Y. (2020). Identification and functional analysis of small RNAs in sesame responding to waterlogging stress. BMC Plant Biology, 20(1), 386.
Malik, A. I., Colmer, T. D., Lambers, H., Schortemeyer, M., & Setter, T. L. (2017). Waterlogging tolerance in the field is related to the degree of anoxia tolerance in roots of wheat (Triticum aestivum). Functional Plant Biology, 44(2), 253-262.
Meuwissen, T. H., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819-1829. https://doi.org/10.1093/genetics/157.4.1819
Mondal, N., Bhat, K. V., & Srivastava, P. S. (2018). Exploration and Utilization of Sesame Germplasm for Genetic Enhancement of Waterlogging Tolerance. Plant Genetic Resources, 16(2), 146-152.
Nguepjop, J. R., Tossim, H. A., & Youmbi, E. (2019). Genetic diversity assessment of sesame (Sesamum indicum L.) landraces in Cameroon. International Journal of Biodiversity Conservation, 11(6), 262-276.
Nyongesa, B. O., Were, B. A., Gudu, S., Dangasuk, O. G., & Onkware, A. O. (2013). The potential of wild relatives in crop improvement: a case of study of the wild relatives of sesame in western Kenya. Journal of Agricultural Science and Technology, 15(4), 71-81.
Pang, J., Bansal, R., Zhao, C., Bohra, A., & Vadez, V. (2017). Response of Chickpea (Cicer arietinum L.) to Terminal Drought: Leaf stomatal conductance, pod ab36. Pang, J., Bansal, R., Zhao, C., Bohra, A., & Vadez, V. (2017). Response of Chickpea (Cicer arietinum L.) to Terminal Drought: Leaf stomatal conductance, pod abscisic acid concentration, and seed set. Journal of Experimental Botany, 68(8), 1973-1985. https://doi.org/10.1093/jxb/erw153
Pathak, N., Rai, A. K., Kumari, R., & Bhat, K. V. (2014). Value addition in sesame: A perspective on bioactive components for enhancing utility and profitability. Pharmacognosy Reviews, 8(16), 147-155. https://doi.org/10.4103%2F0973-7847.134249
Pham, T. T., Tran, T. M., Nguyen, H. T., & Nguyen, T. D. (2017). Waterlogging stress in crops and adaptation mechanisms. Agricultural and Agricultural Science Procedia, 11, 403-409.
Rathore, M. S., Upadhyaya, H. D., & Dangi, R. S. (2020). Breeding sesame (Sesamum indicum L.) for abiotic stress tolerance: A review. Australian Journal of Crop Science, 14(8), 1250-1259.
Ray, S., Kaur, B., Singh, J., & Rathore, P. (2020). Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: An overview. International Journal of Pharmacology, 16(6), 556-579. https://doi.org/10.3390/ijms160612791
Roychoudhury, A., Paul, S., & Basu, S. (2020). Chapter 18 - Molecular mechanisms underlying tolerance to waterlogging in crop plants. In R. N. Maity, N. K. Dubey, B. K. Mandal (Eds.), Crop Improvement through Microbial Biotechnology (pp. 357-377). Academic Press.
Sethi, S. K., Dayal, J., & Singh, S. (2021). Impact of Abiotic Stresses on Sesame (Sesamum indicum L.) Growth and Yield: A Review. International Journal of Current Microbiology and Applied Sciences, 10(4), 159-172.
Setu, M., Rahman, M. S., & Hossain, M. T. (2019). Effects of waterlogging on growth and yield attributes of sesame (Sesamum indicum L.). International Journal of Sustainable Agricultural Research, 6(2), 48-56.
Shrestha, R., Shrestha, S., & Dangi, O. P. (2018). Breeding potential of sesame for waterlogging stress tolerance. Journal of Maize Research and Development, 2(1), 26-35.
Spindel, J., Begum, H., Akdemir, D., Virk, P., Collard, B., Redoña, E., Atlin, G., Jannink, J. L., & McCouch, S. R. (2016). Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genetics, 12(2), e1005806. https://doi.org/10.1371/journal.pgen.1004982
Ullah, I., Liu, D., Lin, F., Chen, X., & Yang, Q. (2020). Comparative transcriptomic analysis of two contrasting46. Ullah, I., Liu, D., Lin, F., Chen, X., & Yang, Q. (2020). Comparative transcriptomic analysis of two contrasting sesame genotypes under salt stress. BMC Plant Biology, 20(1), 73.
Wang, L., Yu, S., Tong, C., Zhao, Y., Liu, Y., Song, C., Zhang, Y., Zhang, X., Wang, Y., Hua, W., Li, D., Li, D., Li, F., Yu, J., Xu, C., Han, X. (2014). Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biology, 15(2), R39.
Wang, W., Pang, J., Zhang, F., Sun, L., Yang, L., & Siddique, K. H. (2022). Transcriptomic and metabolomics-based analysis of key biological pathways reveals the role of lipid metabolism in response to salt stress in the root system of Brassica napus. Plant Growth Regulation, 97(1), 127-41. https://doi.org/10.1007/s10725-021-00788-4
Wang, Y., Li, X., Ma, Q., Liu, F., & Zhu, H. (2020). Effect of waterlogging stress on the growth, physiological characteristics, and gene expression in sesame (Sesamum indicum L.) seedlings. Frontiers in Plant Science, 11, 73.
Wei, X., Wang, L., Yu, J., Zhang, Y., Li, D., & Zhang, X. (2019). Genome-wide identification and analysis of the MADS-box gene family in sesame. Plant Physiology and Biochemistry, 136, 139-153. https://doi.org/10.1016/j.gene.2015.05.018
Wu, Y., Zhang, M., Lv, Z., Liu, H., Wang, X., & Wang, X. (2018). Proteomic analysis reveals that lysine acetylation is involved in sesamol-induced growth inhibition in sesame. Scientific Reports, 8(1), 1-13.
Xie, L., Tang, M., & Zhu, W. (2021). The use of CRISPR/Cas9 in sesame: A review. Frontiers in Plant Science, 12, 721468.
Xiong, J., Chen, D., Chen, Y., Wu, D., & Zhang, G. (2023). Genome-wide association mapping and transcriptomic analysis reveal key drought-responding genes in barley seedlings. Current Plant Biology, 100277. https://doi.org/10.1016/j.cpb.2023.100277
Xu, J., Li, Y., Li, S., Xue, X., & Li, J. (2020). Genome-wide identification and characterization of aquaporin genes (AQPs) in sesame (Sesamum indicum L.) and their expression analysis under salt stress. BMC Genetics, 21(1), 1-21. https://doi.org/10.3390/ijms23063341
Xu, N., Xu, Q., Fan, H., Zhu, Y., Lu, M., & Li, L. (2021). Genome-wide identification and expression profiling of the glutathione transferase gene family in sesame (Sesamum indicum L.) and their roles in abiotic stress responses. BMC Genomics, 22(1), 1-18. https://doi.org/10.3390/genes12121867
Yin, H., Chen, W., Wu, P., & Zhou, K. (2020). Salt stress response and salt tolerance mechanisms of Sesamum indicum L.: A review. Crop Journal, 8(6), 848-860. https://doi.org/10.3390/ijms22073688
Yin, Y., Ma, Q., Zhang, L., Li, X., Mu, H., Li, J., Wang,57. Yin, Y., Ma, Q., Zhang, L., Li, X., Mu, H., Li, J., & Wang, H. (2021). Genome-wide identification and functional analysis of the glycine-rich RNA-binding proteins family in sesame (Sesamum indicum L.). BMC Plant Biology, 21(1), 118.
Zhang, C., Zhang, X., Liu, X., Chen, C., & Liu, X. (2021). Genome-wide identification of bHLH transcription factors involved in waterlogging stress response in sesame (Sesamum indicum L.). Frontiers in Plant Science, 12, 620229. https://doi.org/10.3389/fpls.2022.977649
Zhang, H., Si, X., Ji, X., Fan, R., Liu, J., Chen, K., Wang, D., & Gao, C. (2018). Genome editing of upstream open reading frames enables translational control in plants. Nature Biotechnology, 36(9), 894-898.
Zhang, H., Zhang, J., Wei, P., Zhang, B., Gou, F., Feng, Z., Mao, Y., Yang, L., Zhang, H., Xu, N., & Zhu, J. K. (2020). The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal, 12(6), 797-807. https://doi.org/10.3390/ijms21030809
Zhang, Z., Chen, Y., & Liu, L. (2021). Genome-wide identification and expression analysis of the ARF gene family in sesame (Sesamum indicum L.) under waterlogging stress. PeerJ, 9, e11046. https://doi.org/10.3389/fpls.2021.715820
Zhou, J., Shao, Y., Chen, H., Zhang, B., & Lyu, J. (2020). Development of a high-throughput and non-destructive method for assessing waterlogging tolerance in sesame based on leaf chlorophyll fluorescence. Frontiers in Plant Science,11, 986. https://doi.org/10.53365/nrfhh/144175
Zhou, Y., Yang, Z., Gao, P., Li, R., Li, T., Zhang, L., & Liu, S. (2020). Analysis of QTLs for drought resistance of sesame at seedling stage using mapping and RNA-seq technologies. Scientific Reports, 10(1), 1-14.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 H BASHIR, SA ZAFAR, RS REHMAN, MN KHALID, I AMJAD

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third-party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. © The Author(s)