SOIL SECURITY IN THE SCENARIO OF ABERRANT CLIMATIC CONDITIONS: CHALLENGES, OPPORTUNITIES AND CONSTRAINTS

Authors

  • B ABID Department of Botany, Government College University Faisalabad, Pakistan
  • MN KHALID Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan

DOI:

https://doi.org/10.54112/basrj.v2023i1.13

Keywords:

soil risk, soil security, climate change, policy-making, resilience

Abstract

Climate change has significant implications for soil security, a critical issue given soil's pivotal role in supporting food production, biodiversity, and ecosystem services. The rising global temperatures, changes in precipitation patterns, and the increase in extreme weather events threaten soil health and functions, making it crucial to understand the impacts of climate change on soil security. To comprehensively examine these interactions, this review embarked on a mission to identify the challenges and opportunities and provide directions for future research and policy-making. The extensive review of the relevant scientific literature sheds light on various impacts and potential strategies to enhance soil security amidst the changing climate. Interestingly, while climate change presents substantial challenges to soil security, it also opens the door to promising opportunities. Advances in soil science, climate-smart agricultural practices, and policy opportunities offer hope for improving soil health and resilience. The review highlighted the potential of soil carbon sequestration, robust soil policies, climate-resilient farming practices, and various stakeholders' critical role in shaping future directions. By underscoring the need for further research into soil-climate interactions, the paper serves as a guidepost for future research, policy, and practice to enhance soil security and its contributions to climate change mitigation and adaptation. Thus, it contributes to the collective understanding that safeguarding soil health is a scientific endeavor and a social and economic imperative in our fight against climate change.

References

Amundson, R., Berhe, A. A., Hopmans, J. W., Olson, C., Sztein, A. E., & Sparks, D. L. (2015). Soil and human security in the 21st century. Science, 348(6235), 1261071. https://doi.org/10.1126/science.1261071

Baveye, P. C., Baveye, J., & Gowdy, J. (2016). Soil "Ecosystem" Services and Natural Capital: Critical Appraisal of Research on Uncertain Ground. Frontiers in Environmental Science, 4, 41. https://doi.org/10.3389/fenvs.2016.00041

Bouma, J., & Montanarella, L. (2016). Facing policy challenges with inter- and transdisciplinary soil research focused on the UN Sustainable Development Goals. SOIL, 2(2), 135–145. https://doi.org/10.5194/soil-2-135-2016

Conant, R. T., Ryan, MG., Ågren, G. I., Birge, H. E., Davidson, E. A., Eliasson, P. E., Evans, S. E., Frey, S. D., Giardina, C. P., Hopkins, F. M., Hyvönen, R., Kirschbaum, M. U. F., Lavallee, J. M., Leifeld, J., Parton, W. J., Steinweg, J. M., Wallenstein, M. D., Wetterstedt, J. Å. M., & Bradford, M. A. (2011). Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward. Global Change Biology, 17(11), 3392–3404. https://doi.org/10.1111/j.1365-2486.2011.02496.x

Crowther, T. W., Todd-Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M. B., Snoek, B. L., Fang, S., Zhou, G., Allison, S. D., Blair, J. M., Bridgham, S. D., Burton, A. J., Carrillo, Y., Reich, P. B., Clark, J. S., Classen, A. T., Dijkstra, F. A., Elberling, B., Emmett, B. A., Estiarte, M., Frey, S. D., Guo, J., Harte, J., Jiang, L., Johnson, B. R., Kröel-Dulay, G., Larsen, K. S., Laudon, H., Lavallee, J. M., Luo, Y., Lupascu, M., Ma, L. N., Marhan, S., Michelsen, A., Mohan, J., Niu, S., Pendall, E., Peñuelas, J., Pfeifer-Meister, L., Poll, C., Reinsch, S., Reynolds, L. L., Schmidt, I. K., Sistla, S., Sokol, N. W., Templer, P. H., Treseder, K. K., Welker, J. M., & Bradford, M. A. (2016). Quantifying global soil carbon losses in response to warming. Nature, 540(7631), 104–108. https://doi.org/10.1038/nature20150

Dai, A. (2013). Increasing drought under global warming in observations and models. Nature Climate Change, 3(1), 52–58. https://doi.org/10.1038/nclimate1633

FAO & ITPS. (2015). Status of the World’s Soil Resources (SWSR) – Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy.

FAO. (2017). The future of food and agriculture – Trends and challenges. Rome.

FAO. (2018). The State of Agricultural Commodity Markets 2018. FAO. http://www.fao.org/3/I9542EN/i9542en.pdf

Fierer, N. (2017). Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15(10), 579–590. https://doi.org/10.1038/nrmicro.2017.87

Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., & Snyder, P. K. (2005). Global Consequences of Land Use. Science, 309(5734), 570–574. https://doi.org/10.1126/science.1111772

Hobbs, P. R., Sayre, K., & Gupta, R. (2008). The role of conservation agriculture in sustainable agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 543-555. https://doi.org/10.1098/rstb.2007.2169

IPCC. (2018). Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.

IPCC. (2019). Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Intergovernmental Panel on Climate Change. https://www.ipcc.ch/srccl/

Jose, S. (2009). Agroforestry for ecosystem services and environmental benefits: an overview. Agroforestry Systems, 76(1), 1-10. https://doi.org/10.1007/s10457-009-9229-7

Kendon, E. J., Rowell, D. P., Jones, R. G., & Buonomo, E. (2008). Robustness of future changes in local precipitation extremes. Journal of Climate, 21(17), 4280–4297. https://doi.org/10.1175/2008jcli2082.1

Kremen, C., & Miles, A. (2012). Ecosystem Services in Biologically Diversified versus Conventional Farming Systems: Benefits, Externalities, and Trade-Offs. Ecology and Society, 17(4), 40. https://doi.org/10.5751/ES-05035-170440

Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123(1-2), 1-22. https://doi.org/10.1016/j.geoderma.2004.01.032

Lehmann, J., & Joseph, S. (Eds.). (2015). Biochar for Environmental Management: Science, Technology and Implementation (2nd ed.). Routledge.

Lesk, C., Rowhani, P., & Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529(7584), 84–87. https://doi.org/10.1038/nature16467

McBratney, A., Field, D. J., & Koch, A. (2014). The dimensions of soil security. Geoderma, 213, 203–213. https://doi.org/10.1016/j.geoderma.2013.08.013

Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z. S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., O'Rourke, S., Richer-de-Forges, A. C., Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I., Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C. C., Vågen, T. G., van Wesemael, B., & Winowiecki, L. (2017). Soil carbon 4 per mille. Geoderma, 292, 59-86. https://doi.org/10.1016/j.geoderma.2017.01.002

Montanarella, L., Pennock, D. J., McKenzie, N., Badraoui, M., Chude, V., Baptista, I., Mamo, T., Yemefack, M., Singh Aulakh, M., Yagi, K., Hong, S. Y., Vijarnsorn, P., Zhang, G. L., Arrouays, D., Black, H., Krasilnikov, P., Sobocká, J., Alegre, J., Henriquez, C. R., Mendonça-Santos, M. L., Taboada, M., Espinosa-Victoria, D., AlShankiti, A., Kazem AlaviPanah, S., El Mustafa Elsheikh, E. A., Hempel, J., Camps Arbestain, M., Nachtergaele, F., Vargas, R. (2016). World's soils are under threat. SOIL, 2(1), 79–82. https://doi.org/10.5194/soil-2-79-2016

Nielsen, U. N., Ayres, E., Wall, D. H., & Bardgett, R. D. (2015). Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity–function relationships. European Journal of Soil Science, 66(1), 265–282. https://doi.org/10.1111/ejss.12188

Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-smart soils. Nature, 532(7597), 49-57. https://doi.org/10.1038/nature17174

Poulter, B., MacBean, N., Hartley, A., Khlystova, I., Arino, O., Betts, R., Bontemps, S., Boettcher, M., Brockmann, C., Defourny, P., Hagemann, S., Herold, M., Kirches, G., Lamarche, C., Lederer, D., Ottlé, C., Peters, M., & Peylin, P. (2014). Plant functional type mapping for earth system models. Geoscientific Model Development, 7(7), 3025–3039. https://doi.org/10.5194/gmd-7-3025-2014

Rillig, M. C., Ryo, M., Lehmann, A., Aguilar-Trigueros, C. A., Buchert, S., Wulf, A., Iwasaki, A., Roy, J., & Yang, G. (2019). The role of multiple global change factors in driving soil functions and microbial biodiversity. Science, 366(6467), 886–890. https://doi.org/10.1126/science.aay2832

Robinson, D. A., Fraser, I., Dominati, E. J., Davíðsdóttir, B., Jónsson, J. O. G., Jones, L., Jones, S. B., Tuller, M., Lebron, I., Bristow, K. L., Souza, D. M., Banwart, S., & Clothier, B. E. (2020). On the value of soil resources in the context of natural capital and ecosystem service delivery. Soil Science Society of America Journal, 74(3), 685–700. https://doi.org/10.2136/sssaj2009.0213

Rosenzweig, C., Iglesias, A., Yang, X. B., Epstein, P. R., & Chivian, E. (2001). Climate Change and Extreme Weather Events; Implications for Food Production, Plant Diseases, and Pests. Global Change & Human Health, 2(2), 90–104. https://doi.org/10.1023/A:1015086831467

Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proceedings of the National Academy of Sciences, 106(37), 15594–15598. https://doi.org/10.1073/pnas.0906865106

Smith, P. (2004). Carbon sequestration in croplands: the potential in Europe and the global context. European Journal of Agronomy, 20(3), 229-236. https://doi.org/10.1016/j.eja.2003.08.002

Smith, P. (2016). Soil carbon sequestration and biochar as negative emission technologies. Global Change Biology, 22(3), 1315–1324. https://doi.org/10.1111/gcb.13178

Suding, K. N., Lavorel, S., Chapin, F. S., Cornelissen, J. H. C., Díaz, S., Garnier, E., Goldberg, D., Hooper, D. U., Jackson, S. T., & Navas, M.-L. (2008). Scaling environmental change through the community-level: A trait-based response-and-effect framework for plants. Global Change Biology, 14(5), 1125–1140. https://doi.org/10.1111/j.1365-2486.2008.01557.x

Trenberth, K. E., Dai, A., van der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., & Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 4(1), 17–22. https://doi.org/10.1038/nclimate2067

Van der Putten, W. H., Ramirez, K. S., Poesse, L. et al. (2020). Changing climate and the value of the soil ecosystem. Nature Reviews Earth & Environment, 1, 74–84. https://doi.org/10.1038/s43017-020-0026-1

Wagg, C., Bender, S. F., Widmer, F., & van der Heijden, M. G. A. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, 111(14), 5266–5270. https://doi.org/10.1073/pnas.1320054111

Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—a worldwide overview. Computers and Electronics in Agriculture, 36(2-3), 113-132. https://doi.org/10.1016/S0168-1699(02)00096-0

Downloads

Published

2023-07-15

How to Cite

ABID, B., & KHALID, M. (2023). SOIL SECURITY IN THE SCENARIO OF ABERRANT CLIMATIC CONDITIONS: CHALLENGES, OPPORTUNITIES AND CONSTRAINTS. Biological and Agricultural Sciences Research Journal, 2023(1), 13. https://doi.org/10.54112/basrj.v2023i1.13

Most read articles by the same author(s)