EXPLORING NEW TECHNIQUES AND STRATEGIES FOR ENHANCING RICE DROUGHT TOLERANCE

Authors

  • A ABBAS Department of Plant Breeding and Genetics, University of the Punjab Lahore, Pakistan
  • R KHALIL Department of Plant Breeding and Genetics, University of the Punjab Lahore, Pakistan

DOI:

https://doi.org/10.54112/basrj.v2022i1.4

Keywords:

drought, rice, genetic improvement, gene editing, rain-fed regions

Abstract

Drought stress harms rice production and results in significant economic losses. The severity of the global climate change issue is rising. Given the current and projected levels of global food demand, it is imperative to boost agricultural output in rain-fed, drought-prone areas. Because they are crucial to achieving the production goal in rainfed regions, drought-tolerant rice varieties are in great demand. Future research on genetic improvement for drought resistance should be given top priority. A recent study has shown that several genetic and physiological factors affect how well rice manages drought. This information has been used to make better rice varieties that can manage drought. In addition, new techniques like marker-assisted selection and gene editing are being used to make rice even more resistant to drought.

References

Ahmad, H. M., Wang, X., Ijaz, M., Oranab, S., Ali, M. A., & Fiaz, S. (2022). Molecular aspects of microRNAs and phytohormonal signaling in response to drought stress: A Review. Current Issues in Molecular Biology, 44(8), 3695-3710.

Andleeb, T., Shah, T., Nawaz, R., Munir, I., Munsif, F., & Jalal, A. (2020). QTL mapping for drought stress tolerance in plants. Salt and Drought Stress Tolerance in Plants: Signaling Networks and Adaptive Mechanisms, 383-403.

Anjum, S. A., Ashraf, U., Zohaib, A., Tanveer, M., Naeem, M., Ali, I., ... & Nazir, U. (2017). Growth and development responses of crop plants under drought stress: a review. Zemdirbyste, 104(3), 267-276.

Anjum, S. A., Xie, X., Wang, L. C., Saleem, M. F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026-2032.

Bhandari, U., Gajurel, A., Khadka, B., Thapa, I., Chand, I., Bhatta, D., ... & Shrestha, J. (2023). Morpho-physiological and biochemical response of rice (Oryza sativa L.) to drought stress: A review. Heliyon.

Biswal, A. K., Shamim, M. D., Cruzado, K., Soriano, G., Ghatak, A., Toleco, M., & Vikram, P. (2017). Role of biotechnology in rice production. Rice Production Worldwide, 487-547.

Bot, A., & Benites, J. (2005). The importance of soil organic matter: Key to drought-resistant soil and sustained food production (No. 80). Food & Agriculture Org..

Chaudhry, S., & Sidhu, G. P. S. (2022). Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Reports, 41(1), 1-31.

Chakraborti, M., Anilkumar, C., Verma, R. L., Abdul Fiyaz, R., Reshmi Raj, K. R., Patra, B. C., ... & Subba Rao, L. V. (2021). Rice breeding in India: eight decades of journey towards enhancing the genetic gain for yield, nutritional quality, and commodity value. Oryza. 58 (Special Issue) 2021 (69-88) DOI https://doi.org/10.35709/ory.2021.58.spl.2

Chaves, M. M., & Oliveira, M. M. (2004). Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany, 55(407), 2365-2384.

Cui, M., Zhang, W., Zhang, Q., Xu, Z., Zhu, Z., Duan, F., & Wu, R. (2011). Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant Physiology and Biochemistry, 49(12), 1384-1391.

Dixit, S., Singh, U. M., Singh, A. K., Alam, S., Venkateshwarlu, C., Nachimuthu, V. V., ... & Kumar, A. (2020). Marker assisted forward breeding to combine multiple biotic-abiotic stress resistance/tolerance in rice. Rice, 13, 1-15.

Dornbos Jr, D. L., Mullen, R. E., & Shibles, R. E. (1989). Drought stress effects during seed fill on soybean seed germination and vigor. Crop Science, 29(2), 476-480.

dos Santos, T. B., Ribas, A. F., de Souza, S. G. H., Budzinski, I. G. F., & Domingues, D. S. (2022). Physiological responses to drought, salinity, and heat stress in plants: a review. Stresses, 2(1), 113-135.

El-Beltagi, H. S., Mohamed, H. I., & Sofy, M. R. (2020). Role of ascorbic acid, glutathione and proline applied as singly or in sequence combination in improving chickpea plant through physiological change and antioxidant defense under different levels of irrigation intervals. Molecules, 25(7), 1702.

Foolad, M. R. (2007). Genome mapping and molecular breeding of tomato. International journal of plant genomics, 2007.

Fu, Q. S., Yang, R. C., Wang, H. S., Zhao, B., Zhou, C. L., Ren, S. X., & Guo, Y. D. (2013). Leaf morphological and ultrastructural performance of eggplant (Solanum melongena L.) in response to water stress. Photosynthetica, 51, 109-114.

Ge, T., Sui, F., Bai, L., Tong, C., & Sun, N. (2012). Effects of water stress on growth, biomass partitioning, and water-use efficiency in summer maize (Zea mays L.) throughout the growth cycle. Acta Physiologiae Plantarum, 34, 1043-1053.

González, R., Butković, A., & Elena, S. F. (2020). From foes to friends: Viral infections expand the limits of host phenotypic plasticity. Advances in Virus Research, 106, 85-121.

Guseman, J. M., Webb, K., Srinivasan, C., & Dardick, C. (2017). DRO 1 influences root system architecture in Arabidopsis and Prunus species. The Plant Journal, 89(6), 1093-1105.

Handa, A. K., Gupta, A., & Kumar, R. (2019). Drought-tolerant rice: current progress and future prospects. Frontiers in Plant Science, 10, 990.

Hasan, M. M., Skalicky, M., Jahan, M. S., Hossain, M. N., Anwar, Z., Nie, Z. F., ... & Fang, X. W. (2021). Spermine: its emerging role in regulating drought stress responses in plants. Cells, 10(2), 261.

Hasanuzzaman, M., Hossain, M. A., da Silva, J. A. T., & Fujita, M. (2012). Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. Crop stress and its management: perspectives and strategies, 261-315.

Huang, G. T., Ma, S. L., Bai, L. P., Zhang, L., Ma, H., Jia, P., ... & Guo, Z. F. (2012). Signal transduction during cold, salt, and drought stresses in plants. Molecular Biology Reports, 39, 969-987.

Kim, Y., Chung, Y. S., Lee, E., Tripathi, P., Heo, S., & Kim, K. H. (2020). Root response to drought stress in rice (Oryza sativa L.). International Journal of Molecular Sciences, 21(4), 1513.

Koyama, M. L., Levesley, A., Koebner, R. M., Flowers, T. J., & Yeo, A. R. (2001). Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiology, 125(1), 406-422.

Kumar, S., Sachdeva, S., Bhat, K. V., & Vats, S. (2018). Plant responses to drought stress: physiological, biochemical and molecular basis. Biotic and Abiotic Stress Tolerance in Plants, 1-25.

Li, F. L., Bao, W. K., & Wu, N. (2009). Effects of water stress on growth, dry matter allocation and water-use efficiency of a leguminous species, Sophora davidii. Agroforestry Systems, 77, 193-201.

Liu, Y., Wang, K., Li, D., Yan, J., & Zhang, W. (2017). Enhanced cold tolerance and tillering in switchgrass (Panicum virgatum L.) by heterologous expression of Osa-miR393a. Plant and Cell Physiology, 58(12), 2226-2240.

Maghsoudi, K., Emam, Y., & Pessarakli, M. (2016). Effect of silicon on photosynthetic gas exchange, photosynthetic pigments, cell membrane stability and relative water content of different wheat cultivars under drought stress conditions. Journal of Plant Nutrition, 39(7), 1001-1015.

Marathe, A., Krishnan, V., Vinutha, T., Dahuja, A., Jolly, M., & Sachdev, A. (2018). Exploring the role of Inositol 1, 3, 4-trisphosphate 5/6 kinase-2 (GmITPK2) as a dehydration and salinity stress regulator in Glycine max (L.) Merr. through heterologous expression in E. coli. Plant Physiology and Biochemistry, 123, 331-341.

McHugh, O. V., Steenhuis, T. S., Abebe, B., & Fernandes, E. C. (2007). Performance of in situ rainwater conservation tillage techniques on dry spell mitigation and erosion control in the drought-prone North Wello zone of the Ethiopian highlands. Soil and Tillage Research, 97(1), 19-36.

Nguyen, H. T., Babu, R. C., & Blum, A. (1997). Breeding for drought resistance in rice: physiology and molecular genetics considerations. Crop Science, 37(5), 1426-1434.

Oladosu, Y., Rafii, M. Y., Samuel, C., Fatai, A., Magaji, U., Kareem, I., ... & Kolapo, K. (2019). Drought resistance in rice from conventional to molecular breeding: a review. International journal of molecular Sciences, 20(14), 3519.

Panda, D., Mishra, S. S., & Behera, P. K. (2021). Drought tolerance in rice: focus on recent mechanisms and approaches. Rice Science, 28(2), 119-132.

Ramakrishna, A., Tam, H. M., Wani, S. P., & Long, T. D. (2006). Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Research, 95(2-3), 115-125.

Reynolds, M. P., Quilligan, E., Aggarwal, P. K., Bansal, K. C., Cavalieri, A. J., Chapman, S. C., ... & Yadav, O. P. (2016). An integrated approach to maintaining cereal productivity under climate change. Global Food Security, 8, 9-18.

Richards, R. A., Rebetzke, G. J., Condon, A. G., & Van Herwaarden, A. (2002). Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Science, 42(1), 111-121.

Roy, P. R., Tahjib-Ul-Arif, M., Akter, T., Ray, S. R., & Sayed, M. A. (2016). Exogenous ascorbic acid and hydrogen peroxide alleviates salt-induced oxidative stress in rice (Oryza sativa L.) by enhancing antioxidant enzyme activities and proline content. Advances in Environmental Biology, 10(10), 148-155.

Sahoo, J. P., Mishra, P., Mishra, A. P., Panda, K. K., & Samal, K. C. (2022). Physiological, biochemical, and molecular responses of rice (Oryza sativa L.) towards elevated ozone tolerance. Cereal Research Communications, 1-10.

Salehi-Lisar, S. Y., & Bakhshayeshan-Agdam, H. (2016). Drought stress in plants: causes, consequences, and tolerance. Drought Stress Tolerance in Plants, Vol 1: Physiology and Biochemistry, 1-16.

Sandhu, N., & Kumar, A. (2017). Bridging the rice yield gaps under drought: QTLs, genes, and their use in breeding programs. Agronomy, 7(2), 27.

Sen, S. (2018). Many Faces of Resource Management: Blueprint for Sustainable Conservation.

Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012.

Sheffield, J., & Wood, E. F. (2008). Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate dynamics, 31, 79-105.

Singh, M., & Sood, S. (Eds.). (2020). Millets and pseudo cereals: genetic resources and breeding advancements. Woodhead Publishing.

Singh, R., Singh, Y., Xalaxo, S., Verulkar, S., Yadav, N., Singh, S., ... & Singh, N. K. (2016). From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Science, 242, 278-287.

Theodosis, D. T., Poulain, D. A., & Oliet, S. H. (2008). Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiological Reviews, 88(3), 983-1008.

Todaka, D., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2015). Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Frontiers in Plant Science, 6, 84.

Upadhyaya, H. D., Gowda, C. L. L., Buhariwalla, H. K., & Crouch, J. H. (2006). Efficient use of crop germplasm resources: identifying useful germplasm for crop improvement through core and mini-core collections and molecular marker approaches. Plant Genetic Resources, 4(1), 25-35.

Wassmann, R., Jagadish, S. V. K., Heuer, S., Ismail, A., Redona, E., Serraj, R., ... & Sumfleth, K. (2009). Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies. Advances in Agronomy, 101, 59-122.

Xu, Z., Zhou, G., & Shimizu, H. (2010). Plant responses to drought and rewatering. Plant Signaling & Behavior, 5(6), 649-654.

Yadav, S., Modi, P., Dave, A., Vijapura, A., Patel, D., & Patel, M. (2020). Effect of abiotic stress on crops. Sustainable crop production, 3.

Yang, X., Liu, C., Niu, X., Wang, L., Li, L., Yuan, Q., & Pei, X. (2022). Research on lncRNA related to drought resistance of Shanlan upland rice. BMC Genomics, 23(1), 336.

Downloads

Published

2022-10-15

How to Cite

ABBAS, A., & KHALIL, R. (2022). EXPLORING NEW TECHNIQUES AND STRATEGIES FOR ENHANCING RICE DROUGHT TOLERANCE. Biological and Agricultural Sciences Research Journal, 2022(1), 4. https://doi.org/10.54112/basrj.v2022i1.4