MECHANISM OF DROUGHT STRESS TOLERANCE IN MAIZE

Authors

  • A ARSHAD Department of Plant Breeding and Genetics, University of the Punjab Lahore, Pakistan
  • A ABBAS Department of Plant Breeding and Genetics, University of the Punjab Lahore, Pakistan
  • AU REHMAN Department of Plant Breeding and Genetics, University of the Punjab Lahore, Pakistan

DOI:

https://doi.org/10.54112/basrj.v2022i1.3

Keywords:

drought, maize, CRISPR, Cas9, semi-arid, biochemical

Abstract

Drought stress greatly threatens agricultural productivity, particularly in arid and semi-arid regions. Maize is a key crop globally, and understanding its mechanisms of drought stress tolerance is of utmost importance for sustainable food production. This paper reviews the literature on the molecular and biochemical mechanisms governing maize's response to water scarcity. Further, epigenetic plasticity, transcription regulation, metabolic reprogramming, and gene expression are discussed in detail as adaptive strategies. Additionally, conventional techniques, such as cross-breeding and mutation breeding, as well as biotechnological approaches, like QTL mapping, molecular marker-assisted breeding, transgenic approach, and CRISPR-Cas9, are reviewed as strategies to enhance maize's drought tolerance. This paper concludes by emphasizing the need for additional research to develop advanced crop varieties with improved drought tolerance, contributing to greater sustainability and food security worldwide.

References

Ahmar, S., Gill, R. A., Jung, K. H., Faheem, A., Qasim, M. U., Mubeen, M., & Zhou, W. (2020). Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. International Journal of Molecular Sciences, 21(7), 2590.

Anwar, A., & Kim, J. K. (2020). Transgenic breeding approaches for improving abiotic stress tolerance: recent progress and future perspectives. International Journal of Molecular Sciences, 21(8), 2695.

Aslam, M., Maqbool, M. A., Cengiz, R., Aslam, M., Maqbool, M. A., & Cengiz, R. (2015). Effects of drought on maize. Drought stress in maize (Zea mays L.) effects, resistance mechanisms, global achievements and biological strategies for improvement, 5-17.

Blum, A., & Blum, A. (2011). Drought resistance and its improvement. Plant breeding for water-limited environments, 53-152.

Cakir, R. (2004). Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Research, 89(1), 1-16.

Chen, J., Xu, W., Burke, J. J., & Xin, Z. (2010). Role of phosphatidic acid in high temperature tolerance in maize. Crop Science, 50(6), 2506-2515.

Chen, J., Xu, W., Velten, J., Xin, Z., & Stout, J. (2012). Characterization of maize inbred lines for drought and heat tolerance. Journal of Soil and Water Conservation, 67(5), 354-364.

Chinnusamy, V., & Zhu, J. K. (2009). Epigenetic regulation of stress responses in plants. Current opinion in plant Biology, 12(2), 133-139.

Clauw, P., Coppens, F., Korte, A., Herman, D., Slabbinck, B., Dhondt, S., ... & Inzé, D. (2016). Leaf growth response to mild drought: natural variation in Arabidopsis sheds light on trait architecture. The Plant Cell, 28(10), 2417-2434.

De Boeck, H. J., Bassin, S., Verlinden, M., Zeiter, M., & Hiltbrunner, E. (2016). Simulated heat waves affected alpine grassland only in combination with drought. New Phytologist, 209(2), 531-541.

Du, D., Jin, R., Guo, J., & Zhang, F. (2019). Construction of marker-free genetically modified maize using a heat-inducible auto-excision vector. Genes, 10(5), 374.

Edmeades, G. O. (2013). Progress in achieving and delivering drought tolerance in maize-an update. ISAAA: Ithaca, NY, 130.

Gedil, M., & Menkir, A. (2019). An integrated molecular and conventional breeding scheme for enhancing genetic gain in maize in Africa. Frontiers in Plant Science, 10, 1430.

Hao, Z., Liu, X., Li, X., Xie, C., Li, M., Zhang, D., ... & Xu, Y. (2009). Identification of quantitative trait loci for drought tolerance at seedling stage by screening a large number of introgression lines in maize. Plant Breeding, 128(4), 337-341.

Hasan, N., Choudhary, S., Naaz, N., Sharma, N., & Laskar, R. A. (2021). Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. Journal of Genetic Engineering and Biotechnology, 19(1), 1-26.

Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D., ... & Wolfe, D. (2011). Climate impacts on agriculture: implications for crop production. Agronomy Journal, 103(2), 351-370.

Hospital, F. (2005). Selection in backcross programmes. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1459), 1503-1511.

Jaganathan, D., Ramasamy, K., Sellamuthu, G., Jayabalan, S., & Venkataraman, G. (2018). CRISPR for crop improvement: an update review. Frontiers in Plant Science, 9, 985.

Joshi, R., Wani, S. H., Singh, B., Bohra, A., Dar, Z. A., Lone, A. A., ... & Singla-Pareek, S. L. (2016). Transcription factors and plants response to drought stress: current understanding and future directions. Frontiers in plant Science, 7, 1029.

Kim, N. S., Park, N. I., Kim, S. H., Kim, S. T., Han, S. S., & Kang, K. Y. (2000). Isolation of TC/AG repeat microsatellite sequences for fingerprinting rice blast fungus and their possible horizontal transfer to plant species. Molecules and Cells, 10, 127-134.

Kumar, J., & Abbo, S. (2001). Genetics of flowering time in chickpea and its bearing on productivity in semiarid environments. In: Spaks, D.L., Ed., Advances in Agronomy, Vol. 2, Academic Press, New York, 122-124.

Landi, P., Sanguineti, M. C., Salvi, S., Giuliani, S., Bellotti, M., Maccaferri, M., ... & Tuberosa, R. (2005). Validation and characterization of a major QTL affecting leaf ABA concentration in maize. Molecular Breeding, 15, 291-303.

Lawlor, D. W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, cell & environment, 25(2), 275-294.

Li, W., & Cui, X. (2014). A special issue on plant stress biology: from model species to crops. Molecular Plant, 7(5), 755-757.

Liu, T., Gu, L., Dong, S., Zhang, J., Liu, P., & Zhao, B. (2015). Optimum leaf removal increases canopy apparent photosynthesis, 13C-photosynthate distribution and grain yield of maize crops grown at high density. Field Crops Research, 170, 32-39.

Liu, Y., Subhash, C., Yan, J., Song, C., Zhao, J., & Li, J. (2011). Maize leaf temperature responses to drought: Thermal imaging and quantitative trait loci (QTL) mapping. Environmental and Experimental Botany, 71(2), 158-165.

Ludlow, M. M., & Muchow, R. C. (1990). A critical evaluation of traits for improving crop yields in water-limited environments. Advances in Agronomy, 43, 107-153.

Mahmood, T., Khalid, S., Abdullah, M., Ahmed, Z., Shah, M. K. N., Ghafoor, A., & Du, X. (2019). Insights into drought stress signaling in plants and the molecular genetic basis of cotton drought tolerance. Cells, 9(1), 105.

Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., & Shukla, P. R. (2022). Global Warming of 1.5° C: IPCC Special Report on Impacts of Global Warming of 1.5° C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Cambridge University Press.

McCann, J. C. (2005). Maize and grace: Africa’s encounter with a new world crop, 1500–2000. Harvard University Press.

McMillen, M. S., Mahama, A. A., Sibiya, J., Lubberstedt, T., & Suza, W. P. (2022). Improving drought tolerance in maize: Tools and techniques.

Meena, K. K., Sorty, A. M., Bitla, U. M., Choudhary, K., Gupta, P., Pareek, A., ... & Minhas, P. S. (2017). Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Frontiers in plant science, 8, 172.

Nora, L. C., Westmann, C. A., Martins‐Santana, L., Alves, L. D. F., Monteiro, L. M. O., Guazzaroni, M. E., & Silva‐Rocha, R. (2019). The art of vector engineering: towards the construction of next‐generation genetic tools. Microbial Biotechnology, 12(1), 125-147.

Provart, N. J., Alonso, J., Assmann, S. M., Bergmann, D., Brady, S. M., Brkljacic, J., ... & McCourt, P. (2016). 50 years of Arabidopsis research: highlights and future directions. New Phytologist, 209(3), 921-944.

Rosero, A., Berdugo-Cely, J. A., Šamajová, O., Šamaj, J., & Cerkal, R. (2020). A dual strategy of breeding for drought tolerance and introducing drought-tolerant, underutilized crops into production systems to enhance their resilience to water deficiency. Plants, 9(10), 1263.

Rosero, A., Berdugo-Cely, J. A., Šamajová, O., Šamaj, J., & Cerkal, R. (2020). A dual strategy of breeding for drought tolerance and introducing drought-tolerant, underutilized crops into production systems to enhance their resilience to water deficiency. Plants, 9(10), 1263.

Sarkar, T., Thankappan, R., Mishra, G. P., & Nawade, B. D. (2019). Advances in the development and use of DREB for improved abiotic stress tolerance in transgenic crop plants. Physiology and Molecular Biology of Plants, 25, 1323-1334.

Shelake, R. M., Kadam, U. S., Kumar, R., Pramanik, D., Singh, A. K., & Kim, J. Y. (2022). Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives. Plant Communications, 100417.

Sheoran, S., Kaur, Y., Kumar, S., Shukla, S., Rakshit, S., & Kumar, R. (2022). Recent advances for drought stress tolerance in maize (Zea mays l.): Present status and future prospects. Frontiers in Plant Science, 13:1580.

Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58(2), 221-227.

Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203(1), 32-43.

Tesfaye, K., Kruseman, G., Cairns, J. E., Zaman-Allah, M., Wegary, D., Zaidi, P. H., ... & Erenstein, O. (2018). Potential benefits of drought and heat tolerance for adapting maize to climate change in tropical environments. Climate risk Management, 19, 106-119.

Turner, N. C., Wright, G. C., & Siddique, K. H. M. (2001). Adaptation of grain legumes (pulses) to water-limited environments. Advances in Agronomy, 71:193-231. DOI: 10.1016/S0065-2113(01)71015-2

Vallebueno-Estrada, M., Rodríguez-Arévalo, I., Rougon-Cardoso, A., Martínez González, J., García Cook, A., Montiel, R., & Vielle-Calzada, J. P. (2016). The earliest maize from San Marcos Tehuacán is a partial domesticate with genomic evidence of inbreeding. Proceedings of the National Academy of Sciences, 113(49), 14151-14156.

Varshney, R. K., Barmukh, R., Roorkiwal, M., Qi, Y., Kholova, J., Tuberosa, R., ... & Siddique, K. H. (2021). Breeding custom‐designed crops for improved drought adaptation. Advanced Genetics, 2(3), e202100017.

Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., & SkZ, A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, 13-24.

Wang, J., Li, C., Li, L., Reynolds, M., Mao, X., & Jing, R. (2021). Exploitation of drought tolerance-related genes for crop improvement. International Journal of Molecular Sciences, 22(19), 10265.

Webber, H., Ewert, F., Olesen, J. E., Müller, C., Fronzek, S., Ruane, A. C., ... & Wallach, D. (2018). Diverging importance of drought stress for maize and winter wheat in Europe. Nature Communications, 9(1), 4249.

Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response mechanism of plants to drought stress. Horticulturae, 7(3), 50.

Zhao, F., Zhang, D., Zhao, Y., Wang, W., Yang, H., Tai, F., ... & Hu, X. (2016). The difference of physiological and proteomic changes in maize leaves adaptation to drought, heat, and combined both stresses. Frontiers in Plant Science, 7, 1471.

Zhao, X., Niu, Y., Hossain, Z., Shi, J., Mao, T., & Bai, X. (2023). Integrated QTL Mapping, Meta-Analysis, and RNA-Sequencing Reveal Candidate Genes for Maize Deep-Sowing Tolerance. International Journal of Molecular Sciences, 24(7), 6770.

Zheng, M., Tao, Y., Hussain, S., Jiang, Q., Peng, S., Huang, J., ... & Nie, L. (2016). Seed priming in dry direct-seeded rice: consequences for emergence, seedling growth and associated metabolic events under drought stress. Plant Growth Regulation, 78, 167-178.

ZHU, J. J., WANG, X. P., SUN, C. X., ZHU, X. M., Meng, L. I., ZHANG, G. D., ... & WANG, Z. L. (2011). Mapping of QTL associated with drought tolerance in a semi-automobile rain shelter in maize (Zea mays L.). Agricultural sciences in China, 10(7), 987-996.

Zhu, J. K. (2016). Abiotic stress signaling and responses in plants. Cell, 167(2), 313-324.

Zhu, Z., Qin, J., Dong, C., Yang, J., Yang, M., Tian, J., & Zhong, X. (2021). Identification of four gastric cancer subtypes based on genetic analysis of cholesterogenic and glycolytic pathways. Bioengineered, 12(1), 4780-4793.

Ziyomo, C., & Bernardo, R. (2013). Drought tolerance in maize: Indirect selection through secondary traits versus genomewide selection. Crop Science, 53(4), 1269-1275.

Downloads

Published

2022-11-12

How to Cite

ARSHAD, A., ABBAS, A., & REHMAN, A. (2022). MECHANISM OF DROUGHT STRESS TOLERANCE IN MAIZE. Biological and Agricultural Sciences Research Journal, 2022(1), 3. https://doi.org/10.54112/basrj.v2022i1.3