• AA HARAIRA Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan
  • HSUD MAZHAR Department of Plant Breeding and Genetics, University of the Punjab Lahore, Pakistan
  • A AHMAD Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan
  • MS SHABBIR Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan
  • AR TAHIR Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan
  • W ZULIFQAR Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan



Drought stress, drought tolerance, cotton molecular genetic basis, Gossypium hirsutum


Drought stress is a major factor limiting cotton productivity and quality worldwide. Understanding the physiological and inheritable mechanisms underpinning failure forbearance in cotton is essential for developing strategies to ameliorate cotton yield under water- limited conditions. This review paper summarizes recent advances in our understanding of the physiological and inheritable mechanisms contributing to failure forbearance in cotton. We punctuate cotton's crucial physiological and biochemical responses to failure stress, including changes in photosynthesis, water use effectiveness, and bibulous adaptation. We also review recent progress relating genes and molecular pathways involved in failure forbearance in cotton through transcriptomics and genome-wide association studies. Although significant progress has been made in relating genes and physiological mechanisms involved in cotton failure forbearance, important work remains to completely understand the complex relations between factory responses to  failure stress and the inheritable factors that govern these responses. This review paper underscores the need for continued exploration of the physiological and inheritable mechanisms underpinning cotton failure forbearance and the development of new strategies for perfecting cotton productivity and sustainability under water-limited conditions. Finally, we bandy implicit strategies for perfecting cotton failure forbearance through inheritable engineering, parentage, and agronomic practices. Overall, this review provides a comprehensive overview of the current knowledge on physiological and inheritable failure forbearance in cotton and identifies crucial exploration requirements and openings for unborn progress.


Abdelmoghny, A. M., Raghavendra, K. P., Sheeba, J. A., Santosh, H. B., Meshram, J. H., Singh, S. B., Kranthi, K. R., and Waghmare, V. N. (2020). Morpho-physiological and molecular characterization of drought tolerance traits in Gossypium hirsutum genotypes under drought stress. Physiol Mol Biol Plants 26, 2339-2353. doi:10.1007/s12298-020-00890-3

Abdelraheem, A., Esmaeili, N., O’Connell, M., Zhang, J. J. I. C., and Products (2019). Progress and perspective on drought and salt stress tolerance in cotton. 130, 118-129.

Ahmad, R. T., Malik, T. A., Khan, I. A., and Jaskani, M. J. J. I. J. A. B. (2009). Genetic analysis of some morpho-physiological traits related to drought stress in cotton (Gossypium hirsutum). 11, 235-240.

Anwar, M., Saleem, M. A., Dan, M., Malik, W., Ul-Allah, S., Ahmad, M. Q., Qayyum, A., Amjid, M. W., Zia, Z. U., Afzal, H., Asif, M., Ur Rahman, M. A., and Hu, Z. (2022). Morphological, physiological and molecular assessment of cotton for drought tolerance under field conditions. Saudi J Biol Sci 29, 444-452. doi:10.1016/j.sjbs.2021.09.009

Bauer, P., Faircloth, W., Rowland, D., Ritchie, G., Perry, C., and Barnes, E. J. C. i. m. f. h. r. C. C. I. (2012). Water-sensitivity of cotton growth stages. 1, 17-20.

Cai, X., Jiang, Z., Tang, L., Zhang, S., Li, X., Wang, H., Liu, C., Chi, J., Zhang, X., and Zhang, J. (2021). Genome-wide characterization of carotenoid oxygenase gene family in three cotton species and functional identification of GaNCED3 in drought and salt stress. J Appl Genet 62, 527-543. doi:10.1007/s13353-021-00634-3

Chastain, D. R., Snider, J. L., Choinski, J. S., Collins, G. D., Perry, C. D., Whitaker, J., Grey, T. L., Sorensen, R. B., van Iersel, M., Byrd, S. A., and Porter, W. (2016). Leaf ontogeny strongly influences photosynthetic tolerance to drought and high temperature in Gossypium hirsutum. Journal of Plant Physiology 199, 18-28. doi: 10.1016/j.jplph.2016.05.003

Chen, Q., Bao, C., Xu, F., Ma, C., Huang, L., Guo, Q., and Luo, M. (2021). Silencing GhJUB1L1 (JUB1-like 1) reduces cotton (Gossypium hirsutum) drought tolerance. PLoS One 16, e0259382. doi:10.1371/journal.pone.0259382

Comas, L., Becker, S., Cruz, V. M., Byrne, P. F., and Dierig, D. A. (2013). Root traits contributing to plant productivity under drought. 4. doi:10.3389/fpls.2013.00442

Cottee, N. S., Wilson, I. W., Tan, D. K. Y., and Bange, M. P. (2013). Understanding the molecular events underpinning cultivar differences in the physiological performance and heat tolerance of cotton (Gossypium hirsutum). Funct Plant Biol 41, 56-67. doi:10.1071/FP13140

El-Esawi, M. A., and Alayafi, A. A. (2019). Overexpression of StDREB2 Transcription Factor Enhances Drought Stress Tolerance in Cotton (Gossypium barbadense L.). Genes (Basel) 10. doi:10.3390/genes10020142

Elasad, M., Ahmad, A., Wang, H., Ma, L., Yu, S., and Wei, H. (2020). Overexpression of CDSP32 (GhTRX134) Cotton Gene Enhances Drought, Salt, and Oxidative Stress Tolerance in Arabidopsis. Plants (Basel) 9. doi:10.3390/plants9101388

Esmaeili, N., Cai, Y., Tang, F., Zhu, X., Smith, J., Mishra, N., Hequet, E., Ritchie, G., Jones, D., Shen, G., Payton, P., and Zhang, H. (2020). Towards doubling fibre yield for cotton in the semiarid agricultural area by increasing tolerance to drought, heat and salinity simultaneously. Plant Biotechnology Journal 19, 462-476. doi:10.1111/pbi.13476

Fahad, S., Chen, Y., Saud, S., Wang, K., Xiong, D., Chen, C., Wu, C., Shah, F., Nie, L., and Huang, J. (2013). Ultraviolet radiation effect on photosynthetic pigments, biochemical attributes, antioxidant enzyme activity and hormonal contents of wheat. Food, Agriculture and Environment 11.

Fang, Y., Liao, K., Du, H., Xu, Y., Song, H., Li, X., and Xiong, L. (2015). A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. Journal of Experimental Botany 66, 6803-6817. doi:10.1093/jxb/erv386

Gunapati, S., Naresh, R., Ranjan, S., Nigam, D., Hans, A., Verma, P. C., Gadre, R., Pathre, U. V., Sane, A. P., and Sane, V. A. J. S. r. (2016). Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis. 6, 1-14.

Guo, Y., Pang, C., Jia, X., Ma, Q., Dou, L., Zhao, F., Gu, L., Wei, H., Wang, H., Fan, S., Su, J., and Yu, S. (2017). An NAM Domain Gene, GhNAC79, Improves Resistance to Drought Stress in Upland Cotton. Front Plant Sci 8, 1657. doi:10.3389/fpls.2017.01657

Hassan, S., Ahmad, A., Batool, F., Rashid, B., and Husnain, T. (2021). Genetic modification of Gossypium arboreum universal stress protein (GUSP1) improves drought tolerance in transgenic cotton (Gossypium hirsutum). Physiol Mol Biol Plants 27, 1779-1794. doi:10.1007/s12298-021-01048-5

He, L., Yang, X., Wang, L., Zhu, L., Zhou, T., Deng, J., and Zhang, X. (2013). Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Biochemical and Biophysical Research Communications 435, 209-215. doi:

Hu, W., Zhang, J., Yan, K., Zhou, Z., Zhao, W., Zhang, X., Pu, Y., and Yu, R. (2021). Beneficial effects of abscisic acid and melatonin in overcoming drought stress in cotton (Gossypium hirsutum L.). Physiol Plant 173, 2041-2054. doi:10.1111/ppl.13550

Hulugalle, N. R., Broughton, K. J., and Tan, D. K. Y. (2015). Fine root production and mortality in irrigated cotton, maize and sorghum sown in vertisols of northern New South Wales, Australia. Soil and Tillage Research 146, 313-322. doi:

Hussain, S., Ahmad, A., Wajid, A., Khaliq, T., Hussain, N., Mubeen, M., Farid, H. U., Imran, M., Hammad, H. M., and Awais, M. (2020). Irrigation scheduling for cotton cultivation. In "Cotton production and uses", pp. 59-80. Springer.

Ilyas, M., Nisar, M., Khan, N., Hazrat, A., Khan, A. H., Hayat, K., Fahad, S., Khan, A., and Ullah, A. (2020). Drought Tolerance Strategies in Plants: A Mechanistic Approach. Journal of Plant Growth Regulation 40, 926-944. doi:10.1007/s00344-020-10174-5

Iqbal, M., Khan, M. A., Chattha, W. S., Abdullah, K., and Majeed, A. (2019). Comparative evaluation of Gossypium arboreum L. and Gossypium hirsutum L. genotypes for drought tolerance. Plant Genetic Resources: Characterization and Utilization 17, 506-513. doi:10.1017/s1479262119000340

Khan, A., Pan, X., Najeeb, U., Tan, D. K. Y., Fahad, S., Zahoor, R., and Luo, H. (2018). Coping with drought: stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biol Res 51, 47. doi:10.1186/s40659-018-0198-z

Khan, A., Tan, D. K. Y., Afridi, M. Z., Luo, H., Tung, S. A., Ajab, M., and Fahad, S. (2017). Nitrogen fertility and abiotic stresses management in cotton crop: a review. Environmental Science and Pollution Research 24, 14551-14566. doi:10.1007/s11356-017-8920-x

Kirungu, J. N., Magwanga, R. O., Lu, P., Cai, X., Zhou, Z., Wang, X., Peng, R., Wang, K., and Liu, F. (2019). Functional characterization of Gh_A08G1120 (GH3.5) gene reveal their significant role in enhancing drought and salt stress tolerance in cotton. BMC Genet 20, 62. doi:10.1186/s12863-019-0756-6

Li, Y., Zhang, L., Wang, X., Zhang, W., Hao, L., Chu, X., and Guo, X. (2013). Cotton GhMPK6a negatively regulates osmotic tolerance and bacterial infection in transgenic Nicotiana benthamiana, and plays a pivotal role in development. The FEBS Journal 280, 5128-5144. doi:

Liu, J., Mehari, T. G., Xu, Y., Umer, M. J., Hou, Y., Wang, Y., Peng, R., Wang, K., Cai, X., Zhou, Z., and Liu, F. (2021a). GhGLK1 a Key Candidate Gene From GARP Family Enhances Cold and Drought Stress Tolerance in Cotton. Front Plant Sci 12, 759312. doi:10.3389/fpls.2021.759312

Liu, R., Jiao, T., Zhang, Z., Yao, Z., Li, Z., Wang, S., Xin, H., Li, Y., Wang, A., and Zhu, J. (2021b). Ectopic Expression of the Allium cepa 1-SST Gene in Cotton Improves Drought Tolerance and Yield Under Drought Stress in the Field. Front Plant Sci 12, 783134. doi:10.3389/fpls.2021.783134

Loka, D. A., and Oosterhuis, D. M. (2020). Physiological and Biochemical Responses of Two Cotton (Gossypium hirsutum L.) Cultivars Differing in Thermotolerance to High Night Temperatures during Anthesis. Agriculture 10. doi:10.3390/agriculture10090407

Lu, P., Magwanga, R. O., Kirungu, J. N., Dong, Q., Cai, X., Zhou, Z., Wang, X., Xu, Y., Hou, Y., Peng, R., Wang, K., and Liu, F. (2019a). Genome-wide analysis of the cotton G-coupled receptor proteins (GPCR) and functional analysis of GTOM1, a novel cotton GPCR gene under drought and cold stress. BMC Genomics 20, 651. doi:10.1186/s12864-019-5972-y

Lu, P., Magwanga, R. O., Kirungu, J. N., Hu, Y., Dong, Q., Cai, X., Zhou, Z., Wang, X., Zhang, Z., Hou, Y., Wang, K., and Liu, F. (2019b). Overexpression of Cotton a DTX/MATE Gene Enhances Drought, Salt, and Cold Stress Tolerance in Transgenic Arabidopsis. Front Plant Sci 10, 299. doi:10.3389/fpls.2019.00299

Lu, Y., Cheng, X., Jia, M., Zhang, X., Xue, F., Li, Y., Sun, J., and Liu, F. (2021). Silencing GhFAR3.1 reduces wax accumulation in cotton leaves and leads to increased susceptibility to drought stress. Plant Direct 5, e00313. doi:10.1002/pld3.313

Luo, H. H., Zhang, Y. L., and Zhang, W. F. J. P. (2016). Effects of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch. 54, 65-73. doi:10.1007/s11099-015-0165-7

Magwanga, R. O., Lu, P., Kirungu, J. N., Diouf, L., Dong, Q., Hu, Y., Cai, X., Xu, Y., Hou, Y., Zhou, Z., Wang, X., Wang, K., and Liu, F. (2018a). GBS Mapping and Analysis of Genes Conserved between Gossypium tomentosum and Gossypium hirsutum Cotton Cultivars that Respond to Drought Stress at the Seedling Stage of the BC₂F₂ Generation. Int J Mol Sci 19. doi:10.3390/ijms19061614

Magwanga, R. O., Lu, P., Kirungu, J. N., Dong, Q., Hu, Y., Zhou, Z., Cai, X., Wang, X., Hou, Y., Wang, K., and Liu, F. (2018b). Cotton Late Embryogenesis Abundant (LEA2) Genes Promote Root Growth and Confer Drought Stress Tolerance in Transgenic Arabidopsis thaliana. G3 (Bethesda) 8, 2781-2803. doi:10.1534/g3.118.200423

Magwanga, R. O., Lu, P., Kirungu, J. N., Lu, H., Wang, X., Cai, X., Zhou, Z., Zhang, Z., Salih, H., Wang, K., and Liu, F. (2018c). Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genet 19, 6. doi:10.1186/s12863-017-0596-1

Mahmood, T., Khalid, S., Abdullah, M., Ahmed, Z., Shah, M. K. N., Ghafoor, A., and Du, X. (2019). Insights into Drought Stress Signaling in Plants and the Molecular Genetic Basis of Cotton Drought Tolerance. Cells 9. doi:10.3390/cells9010105

Manavalan, L. P., Guttikonda, S. K., Phan Tran, L.-S., Nguyen, H. T. J. P., and physiology, c. (2009). Physiological and molecular approaches to improve drought resistance in soybean. 50, 1260-1276.

Maqbool, A., Abbas, W., Rao, A. Q., Irfan, M., Zahur, M., Bakhsh, A., Riazuddin, S., and Husnain, T. (2010). Gossypium arboreum GHSP26 enhances drought tolerance in Gossypium hirsutum. Biotechnol Prog 26, 21-5. doi:10.1002/btpr.306

Massacci, A., Nabiev, S. M., Pietrosanti, L., Nematov, S. K., Chernikova, T. N., Thor, K., and Leipner, J. (2008). Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiol Biochem 46, 189-95. doi:10.1016/j.plaphy.2007.10.006

Mazhar, H. S., Shafiq, M., Ali, H., Ashfaq, M., Anwar, A., Tabassum, J., Ali, Q., Jilani, G., Awais, M., Sahu, R., and Javed, M. A. (2023). Genome-Wide Identification, and In-Silico Expression Analysis of YABBY Gene Family in Response to Biotic and Abiotic Stresses in Potato (Solanum tuberosum). Genes (Basel) 14. doi:10.3390/genes14040824

Mehari, T. G., Xu, Y., Magwanga, R. O., Umer, M. J., Shiraku, M. L., Hou, Y., Wang, Y., Wang, K., Cai, X., Zhou, Z., and Liu, F. (2021). Identification and functional characterization of Gh_D01G0514 (GhNAC072) transcription factor in response to drought stress tolerance in cotton. Plant Physiol Biochem 166, 361-375. doi:10.1016/j.plaphy.2021.05.050

Mishra, A. K., and Singh, V. P. J. J. o. h. (2010). A review of drought concepts. 391, 202-216.

Mittal, A., Gampala, S. S., Ritchie, G. L., Payton, P., Burke, J. J., and Rock, C. D. (2014). Related to ABA-Insensitive3(ABI3)/Viviparous1 and AtABI5 transcription factor coexpression in cotton enhances drought stress adaptation. Plant Biotechnol J 12, 578-89. doi:10.1111/pbi.12162

Naeem, M., Naeem, M. S., Ahmad, R., Ihsan, M. Z., Ashraf, M. Y., Hussain, Y., and Fahad, S. (2018). Foliar calcium spray confers drought stress tolerance in maize via modulation of plant growth, water relations, proline content and hydrogen peroxide activity. Archives of Agronomy and Soil Science 64, 116-131. doi:10.1080/03650340.2017.1327713

Nagamalla, S. S., Alaparthi, M. D., Mellacheruvu, S., Gundeti, R., Earrawandla, J. P. S., and Sagurthi, S. R. (2021). Morpho-Physiological and Proteomic Response of Bt-Cotton and Non-Bt Cotton to Drought Stress. Front Plant Sci 12, 663576. doi:10.3389/fpls.2021.663576

Niu, J., Zhang, S., Liu, S., Ma, H., Chen, J., Shen, Q., Ge, C., Zhang, X., Pang, C., and Zhao, X. (2018). The compensation effects of physiology and yield in cotton after drought stress. J Plant Physiol 224-225, 30-48. doi:10.1016/j.jplph.2018.03.001

Pettigrew, W. T. (2004). Physiological Consequences of Moisture Deficit Stress in Cotton. Crop Science 44, 1265-1272. doi:

Qamer, Z., Chaudhary, M. T., Du, X., Hinze, L., and Azhar, M. T. (2021). Review of oxidative stress and antioxidative defense mechanisms in Gossypium hirsutum L. in response to extreme abiotic conditions. Journal of Cotton Research 4. doi:10.1186/s42397-021-00086-4

Qi, Y., Wang, H., Zou, Y., Liu, C., Liu, Y., Wang, Y., and Zhang, W. J. F. L. (2011). Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. 585, 231-239.

Quevedo, Y. M., Moreno, L. P., and BarragÁN, E. (2022). Predictive models of drought tolerance indices based on physiological, morphological and biochemical markers for the selection of cotton (Gossypium hirsutum L.) varieties. Journal of Integrative Agriculture 21, 1310-1320. doi:10.1016/s2095-3119(20)63596-1

Ren, H., Su, Q., Hussain, J., Tang, S., Song, W., Sun, Y., Liu, H., and Qi, G. (2021). Slow anion channel GhSLAC1 is essential for stomatal closure in response to drought stress in cotton. J Plant Physiol 258-259, 153360. doi:10.1016/j.jplph.2020.153360

Saleem, M. A., Malik, W., Qayyum, A., Ul-Allah, S., Ahmad, M. Q., Afzal, H., Amjid, M. W., Ateeq, M. F., and Zia, Z. U. (2021). Impact of heat stress responsive factors on growth and physiology of cotton (Gossypium hirsutum L.). Mol Biol Rep 48, 1069-1079. doi:10.1007/s11033-021-06217-z

Saleem, M. F., Sammar Raza, M. A., Ahmad, S., Khan, I. H., and Shahid, A. M. (2016). Understanding and Mitigating the Impacts of Drought Stress in Cotton- a Review. Pakistan Journal of Agricultural Sciences. doi:10.21162/pakjas/16.3341

Sekmen, A. H., Ozgur, R., Uzilday, B., and Turkan, I. (2014). Reactive oxygen species scavenging capacities of cotton (Gossypium hirsutum) cultivars under combined drought and heat induced oxidative stress. Environmental and Experimental Botany 99, 141-149. doi:10.1016/j.envexpbot.2013.11.010

Shi, J. B., Wang, N., Zhou, H., Xu, Q. H., and Yan, G. T. (2019). The role of gibberellin synthase gene GhGA2ox1 in upland cotton (Gossypium hirsutum L.) responses to drought and salt stress. Biotechnol Appl Biochem 66, 298-308. doi:10.1002/bab.1725

Shiraku, M. L., Magwanga, R. O., Cai, X., Kirungu, J. N., Xu, Y., Mehari, T. G., Hou, Y., Wang, Y., Agong, S. G., Peng, R., Wang, K., Zhou, Z., and Liu, F. (2021). Functional Characterization of GhACX3 Gene Reveals Its Significant Role in Enhancing Drought and Salt Stress Tolerance in Cotton. Front Plant Sci 12, 658755. doi:10.3389/fpls.2021.658755

Shiraku, M. L., Magwanga, R. O., Zhang, Y., Hou, Y., Kirungu, J. N., Mehari, T. G., Xu, Y., Wang, Y., Wang, K., Cai, X., Zhou, Z., and Liu, F. (2022). Late embryogenesis abundant gene LEA3 (Gh_A08G0694) enhances drought and salt stress tolerance in cotton. Int J Biol Macromol 207, 700-714. doi:10.1016/j.ijbiomac.2022.03.110

Sun, F., Chen, Q., Chen, Q., Jiang, M., Gao, W., and Qu, Y. (2021). Screening of Key Drought Tolerance Indices for Cotton at the Flowering and Boll Setting Stage Using the Dimension Reduction Method. Front Plant Sci 12, 619926. doi:10.3389/fpls.2021.619926

Ul-Allah, S., Rehman, A., Hussain, M., and Farooq, M. (2021). Fiber yield and quality in cotton under drought: Effects and management. Agricultural Water Management 255. doi:10.1016/j.agwat.2021.106994

Ullah, A., Akbar, A., Luo, Q., Khan, A. H., Manghwar, H., Shaban, M., and Yang, X. (2019). Microbiome Diversity in Cotton Rhizosphere Under Normal and Drought Conditions. Microb Ecol 77, 429-439. doi:10.1007/s00248-018-1260-7

Ullah, A., Sun, H., Yang, X., and Zhang, X. (2017). Drought coping strategies in cotton: increased crop per drop. Plant Biotechnol J 15, 271-284. doi:10.1111/pbi.12688

Wan, J., Griffiths, R., Ying, J., McCourt, P., and Huang, Y. (2009). Development of Drought-Tolerant Canola (Brassica napus L.) through Genetic Modulation of ABA-mediated Stomatal Responses. Crop Science 49, 1539-1554. doi:

Wang, C., Lu, G., Hao, Y., Guo, H., Guo, Y., Zhao, J., and Cheng, H. (2017). ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton. Planta 246, 453-469. doi:10.1007/s00425-017-2704-x

Wang, M., Wang, Q., and Zhang, B. (2013). Response of miRNAs and their targets to salt and drought stresses in cotton (Gossypium hirsutum L.). Gene 530, 26-32. doi:10.1016/j.gene.2013.08.009

Xiao, S., Liu, L., Zhang, Y., Sun, H., Zhang, K., Bai, Z., Dong, H., Liu, Y., and Li, C. (2020). Tandem mass tag-based (TMT) quantitative proteomics analysis reveals the response of fine roots to drought stress in cotton (Gossypium hirsutum L.). BMC Plant Biol 20, 328. doi:10.1186/s12870-020-02531-z

Yoshida, T., Ohama, N., Nakajima, J., Kidokoro, S., Mizoi, J., Nakashima, K., Maruyama, K., Kim, J.-M., Seki, M., Todaka, D. J. M. G., and Genomics (2011). Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. 286, 321-332.

Yue, Y., Zhang, M., Zhang, J., Tian, X., Duan, L., and Li, Z. J. J. o. e. b. (2012). Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton. 63, 3741-3748.

Zahid, Z., Khan, M. K. R., Hameed, A., Akhtar, M., Ditta, A., Hassan, H. M., and Farid, G. (2021). Dissection of Drought Tolerance in Upland Cotton Through Morpho-Physiological and Biochemical Traits at Seedling Stage. Front Plant Sci 12, 627107. doi:10.3389/fpls.2021.627107

Zahoor, R., Dong, H., Abid, M., Zhao, W., Wang, Y., and Zhou, Z. (2017a). Potassium fertilizer improves drought stress alleviation potential in cotton by enhancing photosynthesis and carbohydrate metabolism. Environmental and Experimental Botany 137, 73-83. doi:10.1016/j.envexpbot.2017.02.002

Zahoor, R., Zhao, W., Abid, M., Dong, H., and Zhou, Z. (2017b). Title: Potassium application regulates nitrogen metabolism and osmotic adjustment in cotton (Gossypium hirsutum L.) functional leaf under drought stress. Journal of Plant Physiology 215, 30-38. doi:

Zahoor, R., Zhao, W., Abid, M., Dong, H., and Zhou, Z. (2017c). Title: Potassium application regulates nitrogen metabolism and osmotic adjustment in cotton (Gossypium hirsutum L.) functional leaf under drought stress. J Plant Physiol 215, 30-38. doi:10.1016/j.jplph.2017.05.001

Zhang, B., Chang, L., Sun, W., Ullah, A., and Yang, X. (2021). Overexpression of an expansin-like gene, GhEXLB2 enhanced drought tolerance in cotton. Plant Physiol Biochem 162, 468-475. oi:10.1016/j.plaphy.2021.03.018

Zhang, H., Khan, A., Tan, D. K. Y., and Luo, H. (2017a). Rational Water and Nitrogen Management Improves Root Growth, Increases Yield and Maintains Water Use Efficiency of Cotton under Mulch Drip Irrigation. Frontiers in Plant Science 8.

Zhang, H., Li, D., Zhou, Z., Zahoor, R., Chen, B., and Meng, Y. (2017b). Soil water and salt affect cotton (Gossypium hirsutum L.) photosynthesis, yield and fiber quality in coastal saline soil. Agricultural Water Management 187, 112-121. doi:

Zhang, H., Ni, Z., Chen, Q., Guo, Z., Gao, W., Su, X., and Qu, Y. (2016a). Proteomic responses of drought-tolerant and drought-sensitive cotton varieties to drought stress. Mol Genet Genomics 291, 1293-303. doi:10.1007/s00438-016-1188-x

Zhang, J., Vibha, S., Stewart, J. M., and Underwood, J. J. J. o. C. S. (2016b). Heat-tolerance in cotton is correlated with induced overexpression of heat-shock factors, heat-shock proteins, and general stress response genes. 20, 253-262.

Zhang, J. B., He, S. P., Luo, J. W., Wang, X. P., Li, D. D., and Li, X. B. (2020). A histone deacetylase, GhHDT4D, is positively involved in cotton response to drought stress. Plant Mol Biol 104, 67-79. doi:10.1007/s11103-020-01024-9

Zhao, L., Hu, Y., Chong, K., and Wang, T. J. A. o. B. (2010). ARAG1, an ABA-responsive DREB gene, plays a role in seed germination and drought tolerance of rice. 105, 401-409.




How to Cite