
                                                        Biological and Agricultural Sciences Research Journal 
                                            eISSN: 2959-653X; pISSN: 2959-6521 

   www.basrj.com 

 DOI: https://doi.org/10.54112/basrj.v2023i1.18 

 Biol. Agri. Sci. Res. J., Volume, 2: 18 

 

1 
 

    BBASR 

PUBLISHERS 

Review Artilce 

 AN OVERVIEW OF DROUGHT TOLERANCE CHARACTERS IN COTTON PLANT: INCREASING 

CROP YIELD WITH EVERY WATER DROP 

 HARAIRA AA1, MAZHAR HSUD2, AHMAD A1, SHABBIR MS1, TAHIR AR1, ZULIFQAR W1*  

1Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan  

2 Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, 

Pakistan 
 *Correspondence author email address: waseemaqib88@gmail.com 

 (Received, 7th January 2023, Revised 24st July 2023, Published 28th July 2023)  

Abstract Drought stress is a major factor limiting cotton productivity and quality worldwide. Understanding the 

physiological and inheritable mechanisms underpinning failure forbearance in cotton is essential for developing 

strategies to ameliorate cotton yield under water- limited conditions. This review paper summarizes recent advances 

in our understanding of the physiological and inheritable mechanisms contributing to failure forbearance in cotton. 

We punctuate cotton's crucial physiological and biochemical responses to failure stress, including changes in 

photosynthesis, water use effectiveness, and bibulous adaptation. We also review recent progress relating genes and 

molecular pathways involved in failure forbearance in cotton through transcriptomics and genome-wide association 

studies. Although significant progress has been made in relating genes and physiological mechanisms involved in 

cotton failure forbearance, important work remains to completely understand the complex relations between factory 

responses to  failure stress and the inheritable factors that govern these responses. This review paper underscores the 

need for continued exploration of the physiological and inheritable mechanisms underpinning cotton failure 

forbearance and the development of new strategies for perfecting cotton productivity and sustainability under water-

limited conditions. Finally, we bandy implicit strategies for perfecting cotton failure forbearance through inheritable 

engineering, parentage, and agronomic practices. Overall, this review provides a comprehensive overview of the 

current knowledge on physiological and inheritable failure forbearance in cotton and identifies crucial exploration 

requirements and openings for unborn progress. 
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Introduction  

Climate change is a global issue, and all the countries 

on earth have been affected by it to some extent. It has 

a direct effect on crop plants and causes issues like 

yield loss and food security problems; because of the 

increase in temperature, different abiotic stresses have 

hindered plants growth out of which drought stress is 

a prominent one (Fahad et al., 2013; Naeem et al., 

2018). It depends on several factors like the 

distribution and amount of rainfall, evaporation rate 

and soil's ability to hold water in it (Ullah et al., 2019; 

Zhang et al., 2016a). An increase in temperature 

causes an increase in evaporation, which leads to 

drought stress, and crops like cotton are highly 

affected by it. According to report by (Comas et al., 

2013), in USA, drought stress alone caused 67% 

reduction in cotton lint yield. It devastates the field 

crops, with abiotic stresses causing 73% decline in 

cotton production worldwide (Mahmood et al., 2019). 

Drought and heat stress are the major issues being 

faced by cultivated crops.(Anwar et al., 2022). In 

recent years drought has attracted many geologists, 

ecologists, and environmentalists (Mishra and Singh, 

2010).   

Drought refers to the water shortage for a specific 

period which affects the crop production 

(Abdelraheem et al., 2019). Global study proposes an 

increase of 4–5.8 °C in air and surface temperatures 

for upcoming decades. From 1979 to 2003, an 

increase of 0.35 and 1.13 °C has been recorded, 

courtesy climate change (Khan et al., 2018). Cotton is 

the most important crop grown in 76 countries for its 

fiber. Drought can drastically affect cotton fiber 

quantitatively and qualitatively (Sekmen et al., 2014).  

It is necessary to study and identify all characteristics 

that can provide cotton plant with tolerance against 

drought stress. These can be used as markers in future 
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breeding programs(Quevedo et al., 2022). Drought 

stress affects plant growth by reducing photosynthesis 

and cell expansion. Cotton crop is very sensitive to 

abiotic stresses, and they mostly cause loss of cotton 

lint which is an important yield yield component of 

the cotton crop (Khan et al., 2017; Magwanga et al., 

2018a). Countries like Pakistan are one of those 

countries which are adversely affected by climate 

change and high-temperature issues. Crops like cotton 

require an adequate amount of water to produce a 

good yield. Still, because of the insufficient water and 

high temperature, cotton crop is often affected by 

drought stress and ultimately causes yield loss 

(Nagamalla et al., 2021; Xiao et al., 2020). Because 

these issues are increasing day by day so, it is the need 

of the hour to produce environment friendly and stress 

tolerant cotton varieties to tackle the drought stress in 

a best possible manner. Under drought stress crop 

photosynthesis reduces by both stomatal and non-

stomatal factors (Zahoor et al., 2017a).  

Drought is a major abiotic stress affecting more than 

40% of agricultural area. Reduced N assimilation has 

been observed in crop plants affected by drought 

stress (Zahoor et al., 2017c). Studies on cotton 

tolerance for abiotic stresses would help to increase 

cotton production and will produce great economic 

value. Drought affects cotton plant’s both metabolic 

and biological pathways (Wang et al., 2013). Cotton 

growth is considered to be divided in five different 

stages as per irrigation requirements (Bauer et al., 

2012). For germination on a plantation, irrigation is 

crucial. Drought stress has little effect from 

emergence to the first square. Still, the following two 

stages, such as first square to first flower and first 

flower to peak bloom, are extremely vulnerable to 

abiotic stress, particularly drought stress. (Bauer et al., 

2012; Ul-Allah et al., 2021). At last stage i.e., peak 

bloom to first boll open, drought stress doesn’t have 

much effect on cotton crop but can affect fiber quality 

(Hussain et al., 2020). Studies have revealed that 

cotton Photosystem II's quantum efficiency decreases 

under drought stress (Massacci et al., 2008). Due to 

drought, losses in the proportion of payment in cotton 

crop have been estimated as 40.8% (Saleem et al., 

2016). Cotton is called as ‘white gold’ as it is 

cultivated for its excellent fiber, but cotton production 

has adversely been affected by the increase in heat and 

water deficit (Abdelmoghny et al., 2020). Cotton may 

be considered as a well adapted crop to high 

temperature and water deficit, but study reveals that 

temperature above optimum has negative effects on 

the yield and quality of fiber (Loka and Oosterhuis, 

2020). The cotton crop's yield is a multi-factor trait 

that is primarily influenced by a variety of variables. 

The ability to withstand or tolerate abiotic stresses, 

particularly drought stress, is a more complex feature 

that largely depends on two physiological and 

environmental components. (Abdelmoghny et al., 

2020; Sun et al., 2021). Therefore, in-depth 

knowledge of morpho-physiological process, genetic 

components and adaptive mechanisms against the 

cotton crop's drought is essential for a plant breeder to 

develop drought-tolerant varieties.  Cotton plant, like 

many other plants adapts to the drought by producing 

HSPs. HSP are a group of gene products that help the 

plant by preventing protein denaturation (Maqbool et 

al., 2010). ABA hormone, is considered as the 

regulator of plant response to abiotic stresses, 

especially drought(Zhao et al., 2010). As different 

hormones perform different functions, thus collective 

application of different hormones can have 

synergistic and antagonistic effects (Hu et al., 2021; 

Mittal et al., 2014; Ullah et al., 2017). Many genes 

like overexpression of AtLOS5 increases the drought 

tolerance in cotton (Mazhar et al., 2023; Yue et al., 

2012; Zahid et al., 2021). Study of genes of the 

cultivars that have previously been characterized for 

their drought tolerance provides framework for the 

breeding for drought tolerance (Cottee et al., 2013; 

Iqbal et al., 2019). Drought tolerance is the ability of 

plant to prevent dehydration under water deficit 

conditions (Ilyas et al., 2020).  

There are several traits that contribute towards 

drought tolerance i.e., stomatal size, stomatal number 

and osmotic adjustments etc. (Ahmad et al., 2009). 

Another mechanism that plant uses is the ‘drought 

avoidance’, it is continuation of plant physiological 

process even during drought (Ilyas et al., 2020; 

Manavalan et al., 2009). As the world population is 

increasing, demand for quality fiber is also increasing, 

but climate change is a strong challenge to meet the 

needs of growing human numbers (Esmaeili et al., 

2020). Cotton genotypes, tolerant for heat and drought 

are pre-requisite for breeding programs. We need to 

identify genetic basis of all those morphological, 

physiological and biochemical traits that can 

contribute towards the tolerance in cotton against 

abiotic stresses (Saleem et al., 2021). (Qamer et al., 

2021) 

This study was concerned  compile the published 

literature in recent years in a brief manner so that, in 

future, if a plant breeder wants to work on developing 

drought tolerant cotton varieties, he can have a 

thorough knowledge of the previous literature and 

save his time of searching and reading more than a ton 

of a papers. This study includes several 

morphological, physiological and biochemical traits 

that can contribute toward drought tolerance in cotton 

plant. In this review, we have also focused on the 

molecular approaches i.e., candidate genes for 

drought tolerance and QTLS identification. Despite 

the complexity of drought tolerance, a huge progress 

has been made to understand its mechanism. Several 

morpho-physiological and molecular adaptations can 

be helpful for breeder to develop a drought-tolerant 

cotton variety 

Drought stress and lint production 

The complicated phenomena of lint production in 

cotton crops is under the control of several 

physiological processes and genes. Since cotton is an 
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indeterminate crop and requires water continually for 

growth and output, water availability is the main 

factor influencing these physio-genetic processes. 

Effects of drought stress are mostly correlated with its 

duration, severity degree, and stage of plant growth. It 

results in the uptake of carbon and the buildup of 

biomass. (Zahoor et al., 2017b), decreased or 

sometimes no carbohydrate production (Galmés, 

Flexas, Savé, & Medrano, 2007), and reduced 

supplies to reproductive organs ultimately leads to 

small boll size (He et al., 2013) and reduction in lint 

yield (Figure. 1). Continuous increase in drought 

stress causes significant decrease in growth of the 

plant which ultimately reduces the final yield so, in 

cotton morpho-physiological play crucial role drought 

stress (Pettigrew, 2004).  

 
Figure 1: Difference between growth patterns of primed and non-primed seeds upon drought stress 

Morpho-Physiological Traits, contributing towards 

drought tolerance in cotton  

Continuously increasing drought stress results in a 

severe plant growth slowdown, ultimately lowering 

the output. There are various morpho-physiological 

characteristics that cotton plants have that make them 

resistant to drought. (Pettigrew, 2004). 

 
Figure 2: Stomatal mechanism upon drought stress 



Biol. Agri. Sci. Res. J., Volume, 2: 18                                                                                       Haraira et al., (2023)         

 

4 
 

Roots 

In the cotton plant, roots are the second-most 

significant vegetative organ after leaves. Due to their 

direct connection to soil water content and role as a 

supplier to other plant body parts, roots are the first 

organs to experience drought stress. Because it is 

challenging to examine roots from a dried soil, there 

is a dearth of data accessible for a thorough 

understanding of the mechanisms occurring in roots.  

The final output of the cotton crop is directly 

correlated with root growth. The amount of moisture 

available to roots influences the growth and 

development of upper plant body parts. (Zhang et al., 

2017a). Soils with low water content mostly have 

longer plant roots and vice versa for soils with more 

water content (Hulugalle et al., 2015). Drought stress 

reduces plant growth by decreasing root mass and 

length densities. Plant breeders are more interested in 

rooting systems with many short and cylindrical roots 

because of their efficiency in response to drought 

stress. Sometimes a mild drought stress can trigger 

cotton plants to unlock their full yield potential (Niu 

et al., 2018) . If plants have long and deeper roots, they 

can easily look for the moisture and nutrients from 

water (Luo et al., 2016).   

Leaves & Photosynthesis 

Leaves are the most important organ of a plant in a 

battle with drought stress. Photosynthesis takes place 

in the leaves through which plants produce energy and 

food for themselves. When a plant faces drought 

stress, its stomata gets close, resulting in decreased 

rate of the photosynthesis process and decreased 

levels of CO2 in the leaves (Zhang et al., 

2017b).Stomata are closed to inhibit water from going 

outside of the plant to tackle the water deficit hence 

cell activities are disturbed, a mild or drought stress 

for a short period can be tackled by a plant but prolong 

exposure to drought stress can severely effects plant. 

Response to drought to depends on its intensity and 

age of the cotton plant (Li et al., 2013). Up to 66% 

photosynthesis rate reduction was observed in mature 

leaves of a cotton plant as compared to its younger 

leaves (Chastain et al., 2016).During drought stress 

plants usually adopt to various morphological 

phenomenon to tackle it i.e., accumulation of wax on 

leaves, rolling of leaves, thickening of cuticle, small 

leaves, tiny and dense number of stomata, and 

formation of vascular bundle sheath (Fang et al., 

2015). Plants release heat using three major 

phenomena i.e., re-radiation, sensible heat loss and 

transcription. Transpiration is responsible for losing 

the most water contents from plants, i.e., up to 90% 

(Wan et al., 2009).Closing of stomata is the first step 

taken by plants to reduce water loss in unfavorable 

conditions. Stomatal conductance can be a possible 

morphological signal of drought tolerance induction 

(Figure. 2).  

Genetic basis of drought tolerance in cotton 

Genes are the key regulators of the mechanisms that 

occur in living organisms. They are often termed as 

the key to start any biochemical reaction in the living 

organisms because these entities have all the 

information regarding growth and development of 

living beings. Not just in normal conditions, their role 

remains the same if any unwanted conditions 

suddenly develop. In case of drought stress, they also 

play a crucial role in survival of plants. Previously 

using bioinformatics studies, it was reported that some 

genes i.e., Gh-D01G0514 (Mehari et al., 2021), 

GhHDT4D (Zhang et al., 2020), GaNCED3a (Cai et 

al., 2021), StDREB2 (El-Esawi and Alayafi, 2019), 

GhTRX134 (Elasad et al., 2020), GhACX3 (Shiraku et 

al., 2021), ABP9 (Wang et al., 2017), GUSP1 (Hassan 

et al., 2021), GhJUB1L1 (Chen et al., 2021), LEA 

Protein (Magwanga et al., 2018c), Gh-D06G0281 

(DTX) (Lu et al., 2019b), GhGA2ox1 (Shi et al., 

2019), GhNAC79 (Guo et al., 2017), GhEXLB2 

(Zhang et al., 2021), and Gh-A08G0694 (Shiraku et 

al., 2022) had upregulation in their expression when 

cotton plants are exposed to drought stress. Some 

gene functions are confirmed with the help of 

performed experiments; list of these genes given in 

the (Table. 1). 

Table. 1: Candidate genes for drought tolerance in cotton

Gene Specie Function Reference 

GaTOP6B Gossypium 

arboreum 

Promotes Leaf and root development and act as a 

positive regulator in drought stress 

(Shi et al., 2019) 

GhSLAC1 Gossypium 

hirsutum 

Controls Stomatal closure in drought stress. (Ren et al., 2021) 

GhGLK1 Gossypium 

hirsutum 

Controls leaf damage in drought stress (Liu et al., 2021a) 

GhFAR3.1 Gossypium 

hirsutum 

Increases wax content and on leaves and helps in 

retention of water under drought stress  

(Lu et al., 2021) 

Gh-A08G1120 Gossypium 

hirsutum 

Increases plant tolerance ability against drought and 

salt stress conditions 

(Kirungu et al., 

2019) 

GTOM1 Gossypium 

hirsutum 

Increases efficiency of cotton plants to tackle drought 

and cold stress  

(Lu et al., 2019a) 
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Cot-AD24498 Gossypium 

hirsutum 

Promotes root growth and help plants in tackling 

drought stress 

(Magwanga et al., 

2018b) 

Ac1-SST Gossypium 

hirsutum 

Increase photosynthesis rate and plant de under 

drought stress 

(Liu et al., 2021b) 

Transcription factors and other candidate genes  

Proteins known as transcription factors have unique 

qualities and capabilities not present in other proteins. 

They typically cooperate in networks or pairs to 

modify particular regulatory pathways. They attach 

directly to the DNA, while some also use ligands. 

There are a lot of insightful facts about TFs for 

drought resistance in cotton crops that can be applied 

to new developments (Table. 2). 

 

Table. 2: Various transcription factors found in Cotton crop and their function 

TF/Gene Primer Sequences Function Reference 

HSP101 FP: GGAAGTGGAATCTGCGATAGT 

RP: GATTTTGTCCCACCACTCTTTG 

NAC protein (Yoshida et al., 

2011) 

HSP3 FP: AGAAAAGTTGACCCTGACCGC 

RP: AACCTCCTCTTCGAGACCAAAC 

(Zhang et al., 2016b) 

HSC70 FP: TTGTTACCGTCCCTGCATACTT 

RP: GACATCAAAAGTACCGCCACC 

(Qi et al., 2011) 

GhNAC2 FP: ATGTGCATCGCAGTCCATC 

RP: CTCCGTACAACGCCAAATCT 

(Gunapati et al., 

2016) 

GbMYB5 FP: GACATCAATGGTTCAAAAGACAGC 

RP: ATTGAAGAACAGAAGTTGAATCCC 

MYB protein Chen et al., 2015 

GhWRKY41 FP: CTTACAGTGGAAGGAAAGAAGA 

RP: TGAAATGAAAGGGAGATGTATTGT 

WRKY protein Chu et al., 2015 

GhMKK1 FP: GAAGAAGAAGCAAAACCTCAGATG 

RP: GTCATCACTACAGCCGCTC 

MMK protein Lu et al., 2013 

GhMKK3 FP: CTGCGTCGGATTGGGAAG 

RP: GAACTACTAACCTCAAGCGG 

Wang et al., 2016 

GhMPK2 FP: GGATCCCAGGAAAATGGCAACTCCAG 

RP: GAGCTCCAGTGGTAAGACAACATCGT 

Mitogen 

activated protein 

kinase 

Zhang et al., 2011 

GhMPK17 FP: GTTGCAAGCATCCGTGGAACCAGAAT 

RP: TAAGACAGATTAAGAACCTCCAGAGG 

Zhang et al., 2014 

Conclusion  

Based on the research and analysis in this review 

paper, it is clear that cotton product failure is a 

significant limiting factor, and that mastering failure 

forbearance in this crop is essential for maintaining 

yields and enhancing global food security.   

Examining the state of our understanding of the 

physiological and inherited causes underlying failure 

In the subject of forbearance in cotton, the important 

factors that contribute to the factory's capacity to 

withstand water stress have been underlined. The 

intricacy of the inherited and molecular mechanisms 

involved, as well as the high expenses and length of 

time required for screening and selecting, are just a 

few of the significant obstacles and constraints in 

breeding failure-tolerant cotton varieties that the 

review has connected.   Despite these obstacles, the 

review has also uncovered some promising directions 

for future research and invention in this area, such as 

the use of cutting-edge genomic tools and strategies 

to pinpoint key genes and molecular pathways linked 

to failure forbearance as well as the creation of more 

efficient and affordable webbing designs for tying 

failure-tolerant cotton lines together.   Overall, this 

review has provided insightful information. into the 

physiological and inheritable base of  failure 

forbearance in cotton crop, and has  stressed the  

significance of continued  exploration and 

development  sweats in this area. By perfecting our 

understanding of the complex mechanisms involved 

in  failure forbearance in cotton, we can develop new  

kinds that are more  suitable to  repel water stress and  

insure a more sustainable and  flexible future for 

cotton  product. 
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